15th World Congress on Computational Mechanics
&
8th Asian Pacific Congress on Computational Mechanics

Yokohama, Japan
Virtual

Congress vision:
Pursuing the Infinite Potential of Computational Mechanics

July 31 – August 5, 2022
(Pre-Open: July 24)

Hosting Organizations:
International Association for Computational Mechanics (IACM)
The Japan Society for Computational Engineering and Science (JSCES)

Supporting Organizations:
The Asian Pacific Association for Computational Mechanics (APACM)
Japan Association for Computational Mechanics (JACM)
Table of Contents

1. Welcome Messages
 - Greetings from the Congress Chair ... 1
 - Greetings from the President of IACM ... 2
 - Greetings from the President of APACM .. 3
 - Greetings from the President of JSCES .. 4
 - Greetings from the President of JACM .. 5

2. Sponsors ... 7

3. Video-On-Demand (VOD) ... 9

4. Live Discussion .. 11

5. Organization .. 15

6. Plenary and Semi-Plenary Lectures ... 19

7. Social Events .. 23

8. Side Events ... 25

9. List of Minisymposia .. 27

10. Scientific Contents ... 45

11. Satellite Sponsor Session .. 125
Greetings from the Congress Chair

On behalf of the Local Organizing Committee, I would like to welcome you to the 15th World Congress on Computational Mechanics and the 8th Asian Pacific Congress on Computational Mechanics in 2022 (WCCM-APCOM 2022). WCCM-APCOM 2022 is organized by the International Association for Computational Mechanics (IACM) and the Asian Pacific Association for Computational Mechanics (APACM) as international societies and the Japan Society for Computational Engineering and Science (JSCES) and the Japan Association for Computational Mechanics (JACM) as local societies.

The Congress was first proposed as the normal format in Yokohama, an attractive port city near Tokyo, before the emergence of COVID-19. It must be a great and honorable event for the researchers on computational mechanics in Japan to host WCCM-APCOM since the 3rd WCCM at Chiba in 1994 and 3rd APCOM at Kyoto in 2007.

The Congress format was changed to the hybrid, in-person and online, by expecting the recovery from the worldwide pandemic. However, the situation has been still uncertain, particularly for the international border control which should be free as possible to invite the participants from the world. Finally, we decided to change the Congress format to the fully virtual. Meeting in-person has been very important, I noticed it again during the pandemic, to transfer the spirit as well as the knowledge of Computational Mechanics to the younger researchers. Unfortunately, such opportunity is not possible in this Congress but I expect it in the next one.

Nevertheless, the researchers who submitted the abstracts for presentation, the mini-symposium organizers, the plenary and semi-plenary lecturers and the sponsors keep contribution to the Congress. I would like to say the highest appreciation to all of them.

Special thanks go to Yokohama Convention & Visitors Bureau and Japan National Tourism Organization for their kind support. Pacifico Yokohama is acknowledged for their flexible attitude to cope with unpredictable conditions, though, eventually and unfortunately, the Congress format has been changed to fully virtual.

Seiichi Koshizuka
The Congress Chair
Greetings from the President of IACM

Dear IACM Community,

It is a great pleasure to welcome you to the 15th World Congress on Computational Mechanics (WCCM), which, in this edition, joins with the 8th Asian-Pacific Congress on Computational Mechanics (APCOM).

As we write these words, we are seeing the first indicators showing that the pandemic begins to recede and, in some months, it will hopefully be behind most of us. Of course, leaving much to do and to rebuild what has been broken or lost. Your safety has been our prime concern in taking the decision of going virtual. International health and travel restrictions to Japan were at the core of this decision. Moreover, we have now a solid experience, proper feedback, and excellent results with the organization of virtual events in our community. I am convinced that we will find in the future plenty of occasions to gather in Yokohama.

We are confident of the success and the quality of this virtual event because of the commitment and professionalism of the organizing team. In fact, I take this opportunity to wholeheartedly thank the Chair of the Congress, Professor Seiichi Koshizuka, and the Secretary General of the Congress, Professor Kenjiro Terada, as well as their local team and IACM staff for the service and dedication in putting together an excellent congress with a program full of timely and challenging topics covering all topics in Computational Science and Engineering. It is comforting to observe how classic topics still prevail and at the same time we embrace new subjects from neighboring disciplines. In fact, classic and new disciplines are motivated, as usual in our discipline, from scientific and industrial relevant problems, which again allows us to advance knowledge in societal pertinent challenges. This cross-fertilization between fields of knowledge has always been at the core of our community.

This 15th edition of WCCM coincides with the 40th Anniversary of the IACM. We tend to overestimate what we can do in a week, but at the same time, we always underestimate what we can achieve over four long decades of research and scientific meetings in computational mechanics. The results are patent. An amazing journey, one that would not have been possible without the enthusiasm and commitment of our entire community, which showed the ambition and boldness to step further, to climb higher. This is a collective achievement of the entire computational mechanics community. Actually, we are proud to count with all your support to showcase the frontier research in our field in this major international gathering.

I wish you all an unforgettable scientific event!

Yours sincerely,

Antonio Huerta
The President of IACM
Greetings from the President of APACM

Welcome all to participate in WCCM-APCOM2022 Yokohama in a virtual format. I am very pleased to hold this important and exciting scientific event in the field of computational mechanics with your participation from all over the world. Although this joint Congress is finally decided to be held in a fully virtual format due to the severe influence of COVID-19 Pandemic raging since early 2020, I am very proud of this event being successfully held with a great and dedicated organization of local organizing members in Japan, i.e. JSCES (The Japan Society of Computational Engineering and Science) and JACM (The Japan Association for Computational Mechanics) as well as the IACM (The International Association for Computational Mechanics) and the APACM (Asian Pacific Association for Computational Mechanics). I specially thank to all members of the organizing team lead by Professor Genki Yagawa (Honorary Congress Chair), Professor Seiichi Koshizuka (Chair), Professor Kazuo Kashiyama (Co-chair), Professor Marie Oshima (Co-chair), and Professor Kenjiro Terada (Secretary General).

The APACM was established in 1999, comprising of the national and regional associations for computational mechanics in the Asia-Australian region, which is one of the three continental associations affiliated with IACM. At present, there are 11 member associations affiliated in APACM. These includes China, Japan, Korea, Australia, Singapore, Taiwan, Hong Kong, India, Malaysia, Thailand and Vietnam. The APACM organizes the Asian Pacific Congress on Computational Mechanics (APCOM) in different countries of the region at the interval of three years. The first Congress was held in Sydney, Australia (2001), the second in Beijing, China (2004) in conjunction with WCCM6, the third in Kyoto, Japan (2007), the fourth in Sydney, Australia (2010) in conjunction with WCCM9, the fifth in Singapore (2013), the sixth in Seoul, Korea (2016) in conjunction with WCCM12, and the seventh in Taipei, Taiwan (2019). The eighth is now holding in Yokohama, Japan in conjunction with WCCM15.

I wish all the participants to enjoy the Congress, and to work together towards our better future.

Shinobu Yoshimura
The President of APACM
Greetings from the President of JSCES

On behalf of the Japan Society for Computational Engineering and Science (JSCES), it is a great pleasure for me to welcome you to the 15th World Congress on Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics (WCCM XV & APCOM VIII) which is organized in a virtual format.

The Japan Society for Computational Engineering and Science (JSCES) was established in 1995, after the success of the 3rd World Congress on Computational Mechanics (WCCM III, Chiba) held in 1994, as an academic organization that pursues development and progress of computational engineering and computational mechanics. Historically, this WCCM XV & APCOM VIII Congress will be a very memorable one also for JSCES.

In the coming era, circumstances surrounding our society and academic societies are becoming more complicated with rapid progress of new information technology and cutting-edge science. One of the trends is major movements such as SDGs, AI, and IoT, and technological changes and evolution. Computational engineering and mechanics are applied in various fields as useful technologies and methods, and also as a way of thinking, in the cyber space of the CPS (Cyber-Physical System) field in cooperation with mathematical information science and data analysis. As seen in the recent unpredictable phenomena such as COVID-19, a computational engineering approach that takes advantage of the characteristics of analysis and synthesis may act greatly in the relationship between humans, society, nature, information and mechanical systems. It may become a driving force to solve problems and create new values.

On the other hand, it is important to go back to the basics and further promote the deepening of expertise based on the elucidation of complex phenomena, to act against the trend of excessive information analysis.

In this background, the main objective of the WCCM Congress series is to provide a forum for presentation and discussion of state-of-the-art advances in computational methods in applied sciences and engineering, including basic methodologies, scientific developments and industrial applications, and to serve as a platform for establishing links between research groups of academia and industry with common as well as complementary activities. I hope that new interdisciplinary awareness and knowledge would be born in this congress.

We remain devoted to providing you with the best cutting-edge content in an engaging format. We thank you again for your continued support and look forward to welcoming you to our virtual WCCM XV & APCOM VIII!

Naoya Sasaki
The President of JSCES
Greetings from the President of JACM

On behalf of the members of the Japan Association for Computational Mechanics (JACM), I would like to welcome you to the 15th World Congress on Computational Mechanics & 8th Asian Pacific Congress on Computational Mechanics (WCCM-APCOM 2022). As the president of the supporting organization, I am very pleased to have all of you in what is considered to be the greatest event in the field of computational mechanics.

I have had great experiences attending WCCM and APCOM in previous years. They have been held in Beijing, Sydney, Sao Paulo, Barcelona, Seoul, New York, Taipei, Singapore and many other cities. At each event, I have enjoyed meeting new and old friends and colleagues, and discovering new trends in the field of computational mechanics. WCCM and APCOM are viewed as the world’s highest level conferences in this field, and technical presentations in these past events have been very challenging for me. It is here that the finest researchers and engineers gather together to share the most cutting-edge knowledge and technology in the field of computational mechanics. As the president of the supporting organization, JACM, my hope is for young researchers especially to experience similar feelings as I have had in the past, and to be inspired and motivated to propel forward the advancement of their field as well as their own development as researchers and engineers. I am sure that WCCM-APCOM 2022 will be an event to facilitate such growth.

JACM is one of the supporting organizations of WCCM-APCOM 2022. JACM is an affiliated organization of the International Association for Computational Mechanics (IACM) and loosely brings together academic societies related to computational mechanics in Japan. The major function of JACM is to distribute information about IACM-related international conferences among researchers and engineers in Japan through these academic societies. Currently, 29 societies participate JACM. JACM encourages researchers and engineers to participate in IACM events and to exchange ideas with their international peers. The members of JACM were very much looking forward to having the WCCM-APCOM, the largest event of both IACM and the Asian Pacific Association for Computation Mechanics (APACM), in Japan. We were so excited to host researchers and engineers from around the world and to invite our friends and colleagues to the event, as WCCM-APCOM 2022 was originally planned to be held in Yokohama, Japan.

Although the Congress is being held as a virtual event due to the pandemic, the technical content is as planned for the face-to-face format. There are about 3000 technical presentations along with plenary and semi-plenary lectures. The presentations and lectures will cover a wide range of topics related to the field of computational mechanics. These include traditional fields, such as solid mechanics, structural mechanics, fracture mechanics, fluid dynamics, and thermodynamics, along with relatively newer subjects such as machine learning. I hope that all the participants of WCCM-APCOM 2022 have great experiences and fruitful exchanges.

Hiroshi Okada
The President of JACM
Sponsors

Platinum Sponsors

- CYBERNET SYSTEMS CO., LTD.
- Dassault Systèmes
- Hexagon
- Keisoku Engineering System Co., Ltd.

Gold Sponsors

- IDAJ Co., LTD.
- JSOL Corporation
- KOZO KEIKAKU ENGINEERING Inc.
- Prometech Software, Inc.
- TechnoStar Co., Ltd.

Satellite Sponsor Session

- KAJIMA Corporation
- RIKEN (R-CCS: RIKEN Center for Computational Science)

Standard Sponsors

- Hitachi, Ltd.
- ITOCHU Techno-Solutions Corporation
- NewtonWorks Corporation
Video-On-Demand (VOD)

Information about the Abstracts and Videos with Q&A feature on the VOD site is provided below. Instruction on how to access and enjoy the VOD site will be shown in the homepage of WCCM-APCOM 2022.

Published date of Abstracts

Published date of Abstracts: July 31

Viewing period and published date of Videos

Video-viewing period with Q&A function: July 24 to August 5
Video-viewing period without Q&A function: August 6 to September 30
Published date of Videos: July 31

Presentation time (Duration of video)

I. Plenary and semi-plenary lectures: Within 45 min
II. Keynote presentation: 40 min
III. Regular presentation: 20 min

About Q&A

The VOD system has a Q&A function such that the author is notified soon via e-mail when comments are received. This function contributes to make a smooth and fruitful discussion in the VOD site.
An overview of the live discussion program for the plenary/semi-plenary (PL/SPL) lectures and the mini-symposia (MS) is provided below. There will be no on-time technical program held during the congress. Assuming that attendees have viewed videos in advance, PL/SPL and MS organizers will facilitate a live discussion session on time. The links of these live discussions will be posted on the video-viewing (VOD: video-on-demand) system.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00</td>
<td>1:00–2:00</td>
<td>19:00–20:00 [−1 day]</td>
<td>16:00–17:00 [−1 day]</td>
<td>Opening/ Award Ceremonies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00–9:20</td>
<td>2:00–2:20</td>
<td>20:00–20:20 [−1 day]</td>
<td>17:00–17:20 [−1 day]</td>
<td>PL: A Matsuo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00–12:00</td>
<td>3:00–5:00</td>
<td>21:00–23:00 [−1 day]</td>
<td>18:00–20:00 [−1 day]</td>
<td>MS live discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:30–13:00</td>
<td>5:30–6:00</td>
<td>23:30–0:00 [−1 day]</td>
<td>20:30–21:00 [−1 day]</td>
<td>Closing Ceremony</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00–16:20</td>
<td>9:00–9:20</td>
<td>3:00–3:20</td>
<td>0:00–0:20</td>
<td>PL: M Oshima</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:00–19:00</td>
<td>10:00–12:00</td>
<td>4:00–6:00</td>
<td>1:00–3:00</td>
<td>MS live discussion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23:00–1:00</td>
<td>16:00–18:00</td>
<td>10:00–12:00</td>
<td>7:00–9:00</td>
<td>Women’s Networking Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000–26:00</td>
<td>13:00–19:00</td>
<td>7:00–13:00</td>
<td>4:00–10:00</td>
<td>MS 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23:00–24:00</td>
<td>16:00–17:00</td>
<td>10:00–11:00</td>
<td>7:00–8:00</td>
<td>MS 0503</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000–22:00</td>
<td>13:00–15:00</td>
<td>7:00–9:00</td>
<td>4:00–6:00</td>
<td>MS 1711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00:00–2:00</td>
<td>17:00–19:00</td>
<td>11:00–13:00</td>
<td>8:00–10:00</td>
<td>MS 0716</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Live Discussion Program for Plenary Lectures (PL) and Semi-Plenary Lectures (SPL)

JST August 1 (Monday) AM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00–9:00</td>
<td>1:00–2:00</td>
<td>19:00–20:00</td>
<td>16:00–17:00</td>
<td>Opening/ Award Ceremonies</td>
<td></td>
<td>Room101A</td>
</tr>
<tr>
<td>9:00–9:20</td>
<td>2:00–2:20</td>
<td>20:00–20:20</td>
<td>17:00–17:20</td>
<td>PL: Akiko Matsuo</td>
<td>Seiichi Koshizuka, Gretar Tryggvason</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: Emilio Silva</td>
<td>SangJoon Shin, Shinji Nishiwaki</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: Zishun Liu</td>
<td>Gui-Rong Liu, Akiyuki Takahashi</td>
<td>Room301A</td>
</tr>
</tbody>
</table>

JST August 1 (Monday) PM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00–16:20</td>
<td>9:00–9:20</td>
<td>3:00–3:20</td>
<td>0:00–0:20</td>
<td>PL: Marie Oshima</td>
<td>Peter Wriggers, Kazuo Kashiyama</td>
<td>Room401P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: Francisco Chinesta</td>
<td>Alessandro Reali, Naoki Takano</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: Chuin-Shan (David) Chen</td>
<td>Daigoro Isobe, Haeng Ki Lee</td>
<td>Room601P</td>
</tr>
</tbody>
</table>

JST August 2 (Tuesday) PM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00–16:20</td>
<td>9:00–9:20</td>
<td>3:00–3:20</td>
<td>0:00–0:20</td>
<td>PL: Irene Arias</td>
<td>René de Borst, Marie Oshima</td>
<td>Room402P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: Sanjay Mittal</td>
<td>Takayuki Aoki, Minoru Shirazaki</td>
<td></td>
</tr>
</tbody>
</table>

JST August 4 (Thursday) AM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00–9:20</td>
<td>2:00–2:20</td>
<td>20:00–20:20</td>
<td>17:00–17:20</td>
<td>PL: C.W. Lim</td>
<td>Charbel Farhat, Hiroshi Okada</td>
<td>Room104A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: SangJoon Shin</td>
<td>Emilio Silva, Mitsuteru Asai</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPL: YuanTong Gu</td>
<td>Ellen Kuhl, Tomohiro Takaki</td>
<td>Room304A</td>
</tr>
</tbody>
</table>
JST August 4 (Thursday) PM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>16:00–16:20</td>
<td>9:00–9:20</td>
<td>3:00–3:20</td>
<td>0:00–0:20</td>
<td>PL: René de Borst</td>
<td>Irene Arias, Chuin-Shan (David) Chen</td>
<td>Room404P</td>
</tr>
</tbody>
</table>

JST August 5 (Friday) AM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00–9:20</td>
<td>2:00–2:20</td>
<td>20:00–20:20 [−1 day]</td>
<td>17:00–17:20 [−1 day]</td>
<td>PL: Charbel Farhat</td>
<td>C.W. Lim, Shinobu Yoshimura</td>
<td>Room105A</td>
</tr>
</tbody>
</table>

JST August 5 (Friday) PM

<table>
<thead>
<tr>
<th>JST (Yokohama)</th>
<th>CEST (Paris)</th>
<th>EDT (NY)</th>
<th>PDT (LA)</th>
<th>Speaker</th>
<th>Chairpersons</th>
<th>Webinar Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:30–13:00</td>
<td>5:30–6:00</td>
<td>23:30–0:00 [−1 day]</td>
<td>20:30–21:00 [−1 day]</td>
<td>Closing Ceremony</td>
<td></td>
<td>Room405P</td>
</tr>
</tbody>
</table>
Organization

Hosting Organizations

International Association for Computational Mechanics (IACM)
The Japan Society for Computational Engineering and Science (JSCES)

Supporting Organizations

The Asian Pacific Association for Computational Mechanics (APACM)
Japan Association for Computational Mechanics (JACM)

Steering Committee

Honorary Chair: Genki Yagawa
Congress Chair: Seiichi Koshizuka
Secretary General, Co-chair: Kenjiro Terada
Co-chair: Kazuo Kashiyama
Co-chair: Marie Oshima
Co-chair: Shinobu Yoshimura

Congress Organizing Committee (COC)

S. Koshizuka (Congress Chair, Japan)
A. Huerta (IACM President, Spain)
O. Allix (IACM Vice President, Europe-Middle East-Africa, France)
J. Fish (IACM Vice President, Americas, USA)
S. Yoshimura (IACM Vice President, Asia Pacific; APACM President, Japan)
J. Dolbow (IACM Secretary General, USA)
K. Kashiyama (APACM Secretary General, Japan)
N. Sasaki (JSCES President, Japan)
H. Okada (JACM President, Japan)
K. Terada (Secretary General, Japan)

Local Organizing Committee (LOC)

S. Koshizuka (Congress Chair)
M. Oshima (Co-chair, Leader of Track 4 in TPC)
K. Kashiyama (Co-chair)
S. Yoshimura (Co-chair)
K. Terada (Secretary General, Co-chair)
Y. Ishitsuka (Deputy Secretary General, JSCES Secretary General)
J. Kato (Deputy Secretary General)
T. Nagashima (Deputy Secretary General)
A. Takahashi (Deputy Secretary General)
D. Isobe (Technical Program Chair, Leader of Track 7 in TPC)
N. Takano (Local Chair)
M. Koishi (Vice-Local Chair)
M. Shirazaki (Secretary-Local)
R. Shioya (Public affairs manager)
M. Asai (Sponsorship manager)
T. Aoki (Leader of Track 1 in TPC)
S. Nishiwaki (Leader of Track 2 in TPC)
A. Matsuo (Leader of Track 3 in TPC)
H. Okada (Leader of Track 5 in TPC)
H. Okuda (Leader of Track 6 in TPC)
T. Hirano (Leader of Track 8 in TPC)

International Advisory Board

A. Huerta (IACM President, Spain)
O. Allix (IACM Vice President, Europe-Middle East-Africa, France)
J. Fish (IACM Vice President, Americas, USA)
S. Yoshimura (IACM Vice President, Asia Pacific; APACM President, Japan)
J. Dolbow (IACM Secretary General, USA)
W. Kam Liu (IACM Past President, USA)
G. Yagawa (IACM Past President, Japan)
E. Ohtake (IACM Past President, Spain)
T. J. Oden (IACM Past President, USA)
T. J. R. Hughes (IACM Past President, USA)
K. Kashiyama (APACM Secretary General, Japan)
F. Auricchio (Italy)
M. Behr (Germany)
F. Cui (Singapore)
C. S. David Chen (Taiwan)
J. S. Chen (USA)
S. W. Chae (Korea)
A. Coutinho (Brazil)
R. de Borst (UK)
C. Farhat (USA)
S. Idelsohn (Argentina)
N. Khalili (Australia)
Y. Y. Kim (Korea)
K. Terada (Japan)
S. Valliappan (Australia)
P. Wriggers (Germany)
Y. B. Yang (Taiwan)
S. K. Youn (Korea)
Z. Zhuang (China)
Y. Zheng (China)
T. Zohdi (USA)
Local Advisory Board (LAB)

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. Sasaki (President of JSCES)</td>
<td>O. Hazama</td>
</tr>
<tr>
<td>D. Isobe (Vice president of JSCES)</td>
<td>M. Ishida</td>
</tr>
<tr>
<td>H. Sakurai (Vice president of JSCES)</td>
<td>J. Kato</td>
</tr>
<tr>
<td>M. Arai</td>
<td>J. Matsumoto</td>
</tr>
<tr>
<td>M. Asai</td>
<td>T. Nagashima</td>
</tr>
<tr>
<td>S. Fujikawa</td>
<td>M. Sakuraba</td>
</tr>
<tr>
<td>H. Hasegawa</td>
<td>R. Shioya</td>
</tr>
</tbody>
</table>

International Scientific Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Allix (France)</td>
<td>V. Fachinoti (Argentina)</td>
</tr>
<tr>
<td>J. Ambrósio (Portugal)</td>
<td>C. Fangsen (Singapore)</td>
</tr>
<tr>
<td>T. Aoki (Japan)</td>
<td>G. Farias Mota (Brazil)</td>
</tr>
<tr>
<td>I. Arias (Spain)</td>
<td>F. Feyel (France)</td>
</tr>
<tr>
<td>A.K. Ariffin (Malaysia)</td>
<td>N. Filipovic (Serbia)</td>
</tr>
<tr>
<td>H. Askes (UK)</td>
<td>M. Floryan (Canada)</td>
</tr>
<tr>
<td>F. Auricchio (Italy)</td>
<td>K. Fuji (Japan)</td>
</tr>
<tr>
<td>J. Baiges (Spain)</td>
<td>K. Garikipati (USA)</td>
</tr>
<tr>
<td>P. Barbosa Lourenço (Portugal)</td>
<td>V. Gavini (USA)</td>
</tr>
<tr>
<td>F.B. Barros (Brazil)</td>
<td>R.G. Ghanem (USA)</td>
</tr>
<tr>
<td>P. Bar-Yoseph (Israel)</td>
<td>S. Ghosh (USA)</td>
</tr>
<tr>
<td>Y. Bazilevs (USA)</td>
<td>L. Godoy (Argentina)</td>
</tr>
<tr>
<td>H. Ben Dhia (France)</td>
<td>A. Gravouil (France)</td>
</tr>
<tr>
<td>M. Behr (Germany)</td>
<td>Y.T. Gu (Australia)</td>
</tr>
<tr>
<td>S.K. Bhattacharyya (India)</td>
<td>S. Hagihara (Japan)</td>
</tr>
<tr>
<td>S. Botello (Mexico)</td>
<td>I. Hagiwara (Japan)</td>
</tr>
<tr>
<td>T. Burczynski (Poland)</td>
<td>X. Han (China)</td>
</tr>
<tr>
<td>D. Camotim (Portugal)</td>
<td>I. Harari (Israel)</td>
</tr>
<tr>
<td>E. Campello (Brazil)</td>
<td>T.J.R. Hughes (USA)</td>
</tr>
<tr>
<td>A. Cardona (Argentina)</td>
<td>N.D. Hung (Vietnam)</td>
</tr>
<tr>
<td>D. Celentano (Chile)</td>
<td>A. Iafrati (Italy)</td>
</tr>
<tr>
<td>J. Cesar de Sa (Portugal)</td>
<td>A. Ibrahimbegovic (France)</td>
</tr>
<tr>
<td>S.W. Chae (Korea)</td>
<td>S. Idelsohn (Argentina)</td>
</tr>
<tr>
<td>S.W. Chang (Taiwan)</td>
<td>I. Iordanof (France)</td>
</tr>
<tr>
<td>P. Chen (China)</td>
<td>D. Isobe (Japan)</td>
</tr>
<tr>
<td>J.S. Chen (USA)</td>
<td>M. Jabareen (Israel)</td>
</tr>
<tr>
<td>M. Cho (Korea)</td>
<td>W. Kanok-Nukulchai (Thailand)</td>
</tr>
<tr>
<td>V.T.B. Chye (Singapore)</td>
<td>K. Kashiyama (Japan)</td>
</tr>
<tr>
<td>I. Colominas (Spain)</td>
<td>N. Khalili (Australia)</td>
</tr>
<tr>
<td>M. Cruchaga (Chile)</td>
<td>C. Kim (Korea)</td>
</tr>
<tr>
<td>E. Cueto (Spain)</td>
<td>M. Kleiber (Poland)</td>
</tr>
<tr>
<td>F.S. Cui (Singapore)</td>
<td>S. Klinkel (Germany)</td>
</tr>
<tr>
<td>P. de Mattos Pimenta (Brazil)</td>
<td>T. Kobayashi (Japan)</td>
</tr>
<tr>
<td>L. Demikowicz (Poland)</td>
<td>M. Kojic (Serbia)</td>
</tr>
<tr>
<td>P. Diez (Spain)</td>
<td>J. Korelc (Slovenia)</td>
</tr>
<tr>
<td>J. Dolbow (USA)</td>
<td>S. Koshizuka (Japan)</td>
</tr>
<tr>
<td>J.L. Drummond Alves (Brazil)</td>
<td>E. Kuhl (USA)</td>
</tr>
<tr>
<td>C.A. Duarte (USA)</td>
<td>T. Kvamsdal (Norway)</td>
</tr>
<tr>
<td>A. Düster (Germany)</td>
<td>H.G. Kwak (Korea)</td>
</tr>
<tr>
<td>E. Dyorkin (Argentina)</td>
<td>O.J. Kwon (Korea)</td>
</tr>
<tr>
<td>S. Elgeti (Austria)</td>
<td>P. Ladevèze (France)</td>
</tr>
<tr>
<td>G. Etse (Argentina)</td>
<td>O. Laghrouche (UK)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>M. Shirazaki</td>
<td>T.H. Lee (Korea)</td>
</tr>
<tr>
<td>M. Takagaki</td>
<td>H.K. Lee (Korea)</td>
</tr>
<tr>
<td>A. Takahashi</td>
<td>C.O. Lee (Korea)</td>
</tr>
<tr>
<td>M. Tsubokura</td>
<td>A.Y.T. Leung (Hong Kong)</td>
</tr>
<tr>
<td>H. Watanabe</td>
<td>S. Leyendecker (Germany)</td>
</tr>
<tr>
<td>N. Yamasaki</td>
<td>A. Lew (USA)</td>
</tr>
<tr>
<td>O. Hazama</td>
<td>G. Li (China)</td>
</tr>
<tr>
<td>M. Ishida</td>
<td>S. Li (USA)</td>
</tr>
<tr>
<td>J. Matsumoto</td>
<td>Q. Li (Australia)</td>
</tr>
<tr>
<td>T. Nagashima</td>
<td>Z. Liu (China)</td>
</tr>
<tr>
<td>M. Sakuraba</td>
<td>C.W. Lim (Hong Kong)</td>
</tr>
<tr>
<td>R. Shioya</td>
<td>C.A. Lin (Taiwan)</td>
</tr>
<tr>
<td>M. Shirazaki</td>
<td>A. Marsden (USA)</td>
</tr>
<tr>
<td>M. Takagaki</td>
<td>Y. Matsumoto (Japan)</td>
</tr>
<tr>
<td>A. Takahashi</td>
<td>J. Matsumoto (Japan)</td>
</tr>
<tr>
<td>M. Tsubokura</td>
<td>A. Menzel (Germany)</td>
</tr>
<tr>
<td>H. Watanabe</td>
<td>G. Meschke (Germany)</td>
</tr>
<tr>
<td>N. Yamasaki</td>
<td>A. Marsden (USA)</td>
</tr>
<tr>
<td>O. Hazama</td>
<td>N. Miyazaki (Japan)</td>
</tr>
<tr>
<td>M. Ishida</td>
<td>N. Moës (France)</td>
</tr>
<tr>
<td>J. Matsumoto</td>
<td>F. Montáns (Spain)</td>
</tr>
<tr>
<td>T. Nagashima</td>
<td>N. Moraga Benavides (Chile)</td>
</tr>
<tr>
<td>M. Sakuraba</td>
<td>J. Murín (Slovakia)</td>
</tr>
<tr>
<td>R. Shioya</td>
<td>T. Münz (Germany)</td>
</tr>
<tr>
<td>M. Takagaki</td>
<td>T. Nagashima (Japan)</td>
</tr>
<tr>
<td>A. Takahashi</td>
<td>K. Nakajima (Japan)</td>
</tr>
<tr>
<td>M. Tsubokura</td>
<td>I. Narra Figuereido (Portugal)</td>
</tr>
<tr>
<td>H. Watanabe</td>
<td>R. Natal Jorge (Portugal)</td>
</tr>
<tr>
<td>N. Yamasaki</td>
<td>D. Neron (France)</td>
</tr>
<tr>
<td>O. Hazama</td>
<td>T.Y. Ng (Singapore)</td>
</tr>
<tr>
<td>M. Ishida</td>
<td>N. Nishimura (Japan)</td>
</tr>
<tr>
<td>J. Matsumoto</td>
<td>S. Nishiwaki (Japan)</td>
</tr>
<tr>
<td>A. Takahashi</td>
<td>T. Nomura (Japan)</td>
</tr>
<tr>
<td>M. Tsubokura</td>
<td>S. Obayashi (Japan)</td>
</tr>
<tr>
<td>H. Watanabe</td>
<td>J.T. Oden (USA)</td>
</tr>
<tr>
<td>N. Yamasaki</td>
<td>R. Ohayon (France)</td>
</tr>
<tr>
<td>O. Hazama</td>
<td>H. Okada (Japan)</td>
</tr>
<tr>
<td>M. Ishida</td>
<td>S. Okazawa (Japan)</td>
</tr>
</tbody>
</table>
Technical Program Committee (TPC)

D. Isobe (Technical Program Chair)

(1) Data-Scientific Computational Mechanics
- T. Aoki (Leader, Japan)
 - S. Moriguchi (Japan)
 - M. Tsubokura (Japan)
- F. Chinesta (France)
 - R. Onishi (Japan)
- P. Koumoutsakos (USA)
 - K. Schneider (France)

(2) Computational Applied Mathematics
- S. Nishiwaki (Leader, Japan)
 - S. Min (Korea)
 - J. Yoo (Korea)
- G. Allaire (France)
 - E.C.N. Silva (Brazil)
 - Hyunho Kim (Korea)
- Y.Y. Kim (Korea)
 - Takayuki Yamada (Japan)

(3) Computational Fluid Dynamics
- A. Matsuo (Leader, Japan)
 - B.J. Lee (Korea)
 - G. Tryggvason (USA)
- M.C. Hsu (USA)
 - K. Takizawa (Japan)
- S. Kawai (Japan)
 - H. Terashima (Japan)

(4) Computational Multiphysics
- M. Oshima (Leader, Japan)
 - S. Ji (China)
 - M. Sakai (Japan)
- S. li (Japan)
 - A. Marsden (USA)
 - A. Yu (Australia)

(5) Computational Solids and Structural Mechanics
- H. Okada (Leader, Japan)
 - M. Kurumatani (Japan)
 - V. Tan (Singapore)
- L. De Lorenzis (Switzerland)
 - Z. Liu (China)
 - S. Tanaka (Japan)
- P. Devloo (Brazil)
 - S. Min (Korea)
 - J.P. Yang (Taiwan)
- C.A. Duarte (USA)
 - D. Okumura (Japan)
 - Z. Yosibash (Israel)
- K. Fujijsawa (Japan)
 - J. Soric (Croatia)
- Y.T. Gu (Australia)
 - T. Takaki (Japan)

(6) Scientific High-performance Computing
- H. Okuda (Leader, Japan)
 - D. Littlewood (USA)
 - H. Tufo (USA)
- K. Inagaki (Japan)
 - N. Morita (Japan)
(7) Safety & Environmental Engineering

D. Isobe (Leader, Japan) J.S. Chen (USA) H.K. Lee (Korea)
M. Asai (Japan) T.S. Han (Korea) M. Papadrakakis (Greece)
S. Cao (China) S. Iizuka (Japan)

(8) Computational Mechanics in Industrial Liaison Activities

T. Hirano (Leader, Japan) H. Kadokawa (Japan) N. Sasaki (Japan)
N. Gauger (Germany) M. Maggiore (Belgium)
Y. Ito (Japan) T. Nagai (Japan)

Local Executive Committee (LEC)

N. Takano (Local Chair) J. Matsumoto R. Shioya
M. Koishi (Vice-Local Chair) M. Muramatsu K. Suzuki
M. Shirazaki (Secretary-Local) T. Nagashima Y. Tadano
M. Asai Y. Nakabayashi A. Takahashi
H. Fujii K. Nakajima A. Takezawa
K. Fukagata K. Nishiguchi M. Tanahashi
R. Higuchi S. Okazawa Y. Wada
H. Isakari T. Oya H. Watanabe
K. Iwamoto S. Ozaki Tomonori Yamada
J. Kato K. Shibata Q. Yu
M. Kikumoto T. Shimokawabe
K. Matsui Y. Shintaku

Video On Demand Working Group (VOD-WG)

A. Takahashi (Chair) K. Nishiguchi Y. Shintaku
M. Asai N. Takano H. Watanabe
D. Isobe K. Terada
J. Kato T. Shimokawabe

Booklet Working Group (Booklet-WG)

J. Kato (Chair) M. Kurumatani M. Shirazaki
M. Asai A. Takahashi H. Watanabe
D. Isobe N. Takano
R. Higuchi K. Terada

IACM Secretariat

Cristina Vizcaya (IACM Executive Director)

Congress Secretariat

Japan Convention Services, Inc.
14F, Daido Seimei Kasumigaseki Bldg. 1-4-2, Kasumigaseki, Chiyoda-ku 100-0013 Tokyo, JAPAN
Plenary and Semi-Plenary Lectures

Plenary Lectures

Designing flexoelectric metamaterials through computational strain gradient engineering
Irene Arias
Lacan, Universitat Politècnica de Catalunya, Spain

Fracture and flow in porous media: a two-scale approach and spline-based discretisation
René de Borst
University of Sheffield, UK

Computational mechanics-based digital twin for model predictive control of autonomous UAV landing in adverse conditions
Charbel Farhat
Stanford University, USA

From engineered metastructures to natural seismic metamaterials: theory, computational aspects and experiments
C.W. Lim
City University of Hong Kong, Hong Kong

Development of new rocket propulsion system "Rotating Detonation Engine"
Akiko Matsuo
Keio University, Japan

Computational hemodynamics for clinical applications - crossroad between patient-specific simulation and machine-learning techniques
Marie Oshima
The University of Tokyo, Japan
Semi-Plenary Lectures

Deep materials modeling and design
Chuin-Shan (David) Chen
National Taiwan University, Taiwan

Empowering data-informed engineering from smarter data, sensing and hybrid modelling
Francisco Chinesta
ENSAM Institute of Technology, France

Machine-learning based computational mechanics as a powerful tool for engineering and science
YuanTong Gu
Queensland University of Technology, Australia

Discrete crack models in regularized fracture mechanics for mesh-based and mesh-free methods
Michael Kaliske
TU Dresden, Germany

Opportunities for Machine Learning in Computational Mechanics
Ellen Kuhl
Stanford University, USA

On law- and data-based methods
Gui-Rong Liu
University of Cincinnati, USA
A semi-resolved CFD-DEM approach for particulate flows with thermal convection
Moubin Liu
Peking University, China

Hierarchical Deep Learning Neural Network (HiDeNN)-FEM-AI for process design and performance prediction of material systems
Wing Kam Liu
Northwestern University, USA

Recent advances of constitutive models of soft smart materials - from molecular, network scales to continuum scale
Zishun Liu
Xi’an Jiaotong University, China / National University of Singapore, Singapore

Wings at low Reynolds numbers and lifting line theory
Sanjay Mittal
Indian Institute of Technology Kanpur, India

Isogeometric analysis: some recent advances and applications
Alessandro Reali
University of Pavia, Italy

Parametric model order reduction for fluid and structure objects
SangJoon Shin
Seoul National University, Korea
A Topology Optimization Approach Towards Fluid Flow Design Problems

Emilio Silva
Polytechnic School of University of São Paulo, Brazil

Prediction of fatigue crack propagation using effective regularization techniques for regression problems

Yoshitaka Wada
Kindai University, Japan

Virtual elements in engineering sciences

Peter Wriggers
Leibniz University Hannover, Germany
Social Events

Opening Ceremony (Aug. 1)
JST (Yokohama): 8:00–8:10
CEST (Paris): 1:00–1:10
EDT (NY): 19:00–19:10 [–1 day]
PDT (LA): 16:00–16:10 [–1 day]
- Welcome addresses
 - Congress Chair - Seiichi Koshizuka
 - IACM President - Antonio Huerta
 - APACM President - Shinobu Yoshimura

Award Ceremonies (Aug. 1)
JST (Yokohama): 8:15–9:00
CEST (Paris): 1:15–2:00
EDT (NY): 19:15–20:00 [–1 day]
PDT (LA): 16:15–17:00 [–1 day]
- APACM Award Ceremony
- IACM Award Ceremony

Closing Ceremony (Aug. 5)
JST (Yokohama): 12:30–13:00
CEST (Paris): 5:30–6:00
EDT (NY): 23:30–0:00 [–1 day]
PDT (LA): 21:30–22:00 [–1 day]
- Closing remarks
 - IACM President
 - New IACM President
 - New APACM President
- Announcement of next conferences
 - USNCCM 2023
 - WCCM-PANACM 2024
 - APCOM 2025
- Congress Chair final remark
Side Events

Short Courses (IACM)
- Advanced Parallel Programming in C++
- Machine Learning for Solid Mechanics

Women’s Networking Event (FRC: IACM Female Researchers Chapter) (Aug. 3)

JST (Yokohama): 23:00–1:00
CEST (Paris): 16:00–18:00
EDT (NY): 10:00–12:00
PDT (LA): 7:00–9:00
- Welcoming messages
- Panel discussion
- Announcement of the WCCM-FRC Merit-Based award recipients
- Communication exchange for developing networks among attendees
List of Minisymposia

0100-Fracture, Damage and Failure Mechanics

MS0101 ADVANCED MATERIALS: COMPUTATIONAL ANALYSIS OF PROPERTIES AND PERFORMANCE
Vadim V. Silberschmidt, Valery P. Matveenko

MS0103 Composite materials under crash and impact loading
Michael May

MS0104 NUMERICAL SIMULATION AND EXPERIMENT OF CATASTROPHIC FAILURE MECHANICS
Tiantang Yu, Qingwen Ren

MS0105 Computational Damage & Fracture Modeling in Multiphysics Framework
Mostafa Mobasher, Haim Waisman, C. Armando Duarte, Patrice Longère, Sundararajan Natarajan

MS0106 Crack propagation in multiphysics problems
Ugo Galvanetto, Bernhard A. Schrefler

MS0107 Peridynamic Theory and Multiscale Methods for Complex Material Behavior
Patrick Diehl, Pablo Seleson, Fei Han, Erkan Oterkus, Gilles Lubineau

MS0108 Recent advances in computational modeling of damage and fracture
Leong Hien Poh, Ron Peerlings, Tinh Quoc Bui, John Dolbow, Amine Benzerga

MS0109 Recent Advances in Modeling and Simulating Extreme Events
Yan Liu, Xiong Zhang, Zhen Chen, Dongdong Wang, Fei Xu, Cheng Wang

MS0110 CURRENT TRENDS IN PHASE-FIELD MODELING AND COMPUTATION OF FRACTURE & FATIGUE
Fadi Aldakheel, Ralf Müller, Laura De Lorenzis

MS0112 DUCTILITY ENHANCEMENT: ADVANCES IN EXPERIMENTAL AND COMPUTATIONAL MECHANICS
Kaan Inal, Toshihiko Kuwabara, Dirk Mohr, Jidong Kang

MS0113 Damage and Failure of Composite Materials and Structures
Stephen Hallett, Joris Remmers, Pedro Camanho

MS0114 Computational Modelling of Self-healing Composite Materials and Structures
Ivica Smojver, Vassilis Kostopoulos

MS0115 Plastic instability and fracture in ductile materials
Shmuel Osovski, Ankit Srivastava, José A. Rodríguez-Martínez

MS0116 Multi-stage Failure Simulations
Mao Kurumatani, Kyoungsoo Park, Kenjiro Terada, Norio Takeuchi, Rene de Borst

MS0117 Advancement of computational fracture mechanics applications
Yoshitaka Wada, Hiroshi Okada, Toshio Nagashima, Xueling Fan, Liu Zhanli

MS0118 Computational analysis of fiber reinforced composites
Vincent Tan, Ryo Higuchi, Jun Koyanagi, Tong Earn Tay

MS0119 Ductile-Fracture Modeling and Simulation
Kazutake Komori

MS0120 Peridynamics and Nonlocal Theories for Fracture Modelling: Recent Developments and Their Applications
Satoyuki Tanaka, Tinh Bui Quoc, Selda Oterkus, Erkan Oterkus, Erdogan Madenci
<table>
<thead>
<tr>
<th>MS0121</th>
<th>Recent Advances in Computational Fracture Mechanics for Subsurface Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juan Michael Sargado, Michael Welch, Inga Berre</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0122</th>
<th>Fracture, Damage and Failure Mechanics of Smart and Active Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sergey Kozinov, Bai-Xiang Xu, Andreas Ricoeur, John Huber, Hongjun Yu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0123</th>
<th>Computational Fracture Modeling in Heterogeneous Materials – Recent Advances and Future Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paras Kumar, Dhananjay Phansalkar, Julia Mergheim, Sigrid Leyendecker, Paul Steinmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0124</th>
<th>Modeling of concrete in an Experimental-Virtual-Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jörg Schröder, Steffen Anders, Dominik Brands, Laura de Lorenzis, Peter Wriggers, Michael Kaliske, Ken Terada</td>
<td></td>
</tr>
</tbody>
</table>

0200-Advanced Discretization Techniques

<table>
<thead>
<tr>
<th>MS0201</th>
<th>ADVANCES IN THE SCALED BOUNDARY FINITE ELEMENT METHOD AND OTHER SEMI-ANALYTICAL & NUMERICAL TECHNIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sascha Eisentraeger, Hauke Gravenkamp, Ean Tat Ooi, Sundararajan Natarajan, Carolin Birk, Sven Kinkel, Chongmin Song</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0202</th>
<th>Virtual Element and related polygonal methods in solid and fluid mechanics applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Wriggers, Edoardo Artioli, Lourenco Beirão da Veiga</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0203</th>
<th>Advances in High-Order Methods for Computational Fluid Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freddie Witherden, Yoshiaki Abe, Peter Vincent</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0204</th>
<th>Recent advances in immersed boundary and fictitious domain methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alexander Düster, Oriol Colomés, Sascha Einsträger, Thomas-Peter Fries, Mats Larson, Mario Ricchiuto, Juan José Rodenas, Riccardo Rossi, Andreas Schröder, Guglielmo Scovazzi, Ernst Rank</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0205</th>
<th>Particle-based methods: advances and applications in DEM, PFEM, SPH, MPM, MPS and others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sergio Idelsohn, Eugenio Onate, Eduardo M.B. Campello, Tarek I. Zohdi, Peter Wriggers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0206</th>
<th>Industrial Applications of IGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hugo Casquero, Xiaodong Wei, Emily Johnson, Ming-Chen Hsu, Jessica Zhang, Matt Sederberg, Attila Nagy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0207</th>
<th>Special Methods in Computational Fluid Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matthias Kirchhart, Abhinav Jha</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0208</th>
<th>Particle-based methods for computational multi-physics and multi-scale fluid dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhe Ji, Lin Fu, Nikolaus Adams</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0209</th>
<th>Current Trends and Advances in Coupled Simulations and Enriched Finite Element Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olivier Allix, Alejandro Aragon, Daniel Dias-da-Costa, Armando Duarte</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0210</th>
<th>Mesh-free particle methods for multi-physics problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmad Shakibaieinia, Abbas Khayyer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0211</th>
<th>Isogeometric Spline Techniques on Complex Geometries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xiaodong Wei, Deepesh Tosnhiwal, Hugo Casquero, Yongjie Zhang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0213</th>
<th>Advances and Applications of Collocation Methods: Meshfree, IGA, Machine Learning for PDEs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pratik Suchde, Isabel Michel, Elena Atroshchenko, Stéphane P.A. Bordas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0214</th>
<th>CAD-based discretization methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pablo Antolin, Robin Bouclier, Rafael Vázquez Hernández, Thomas Elguedj, Annalisa Buffa</td>
<td></td>
</tr>
</tbody>
</table>
List of Minisymposia

MS0215
Locking, Stability and Robustness of Non-linear Finite Elements for Large Deformation Problems
Simon Bieber, Manfred Bischoff, Robin Pfefferkorn, Peter Betsch, Alessandro Reali, Ferdinando Auricchio

MS0217
HIGH ORDER NUMERICAL METHODS AND HIGH ORDER MESH GENERATION
Bo Liu, Xuefeng Zhu, Yingjun Wang, Yujie Guo

0300-Multiscale and Multiphysics Systems

MS0301
Mathematical and Mechanical Aspects of Mixed-Dimensional Coupling Problems
Alexander Popp, Barbara Wohlmuth, Jan Martin Nordbotten

MS0302
Quasistatic Electromechanics: Methods and Applications
James Carleton, Wen Dong

MS0303
Computational interface mechanics in coupled problems
K. C. Park, C. A. Felippa, Roger Ohayon, Herrmann Matthies, José González, Jin-Gyun Kim, Radek Kolman

MS0304
Multi-scale and machine learning-based modeling methods for optimization and design of composites
Alfonso Pagani, Marco Petrolo, Maryiam Shakiba, Chao Zhang

MS0305
MULTIPHYSICS MECHANICS & TRANSPORT PHENOMENA IN SOFT MATERIALS & THEIR INTERFACES: THEORY, SIMULATIONS, & EXPERIMENTS
HUA LI, BERKIN DORTDIVANIOGLU, KEK BOON GOH, Eric C.S. Ngin

MS0306
MULTISCALE COMPUTATIONAL HOMOGENIZATION FOR BRIDGING SCALES IN THE MECHANICS AND PHYSICS OF COMPLEX MATERIALS
Julien Yvonnet, Kenjiro Terada, Peter Wriggers, Marc Geers, Karel Matous

MS0307
Multi-scale and Multi-physics Computations in Fluids and Solids
Yozo Mikata, Glaucio Paulino

MS0308
Computations in mechanics of metamaterials
Bilen Emek Abali, Ivan Giorgio, Luca Placidi

MS0310
Advances in phase-field modelling and simulation
Akinori Yamanaka, Tomohiro Takaki, Yuhki Tsukada

MS0311
Performance analysis and degradation studies of photovoltaic modules
Pattabhi Ramaiah Budarapu, Naresh Varma Datla, Marco Paggi

MS0312
MULTISCALE COUPLING METHODS FOR MODELING AND SIMULATION OF MATERIALS
Hao Wang, Huajie Chen, Lei Zhang

MS0313
Novel Modeling Strategies for Mechatronic Systems
Florian Toth, Manfred Kaltenbacher

MS0314
3D MODELING OF BUILDING MATERIALS: GEOMETRIC AND CONSTITUTIVE ISSUES
Beatrice Pomaro, Gianluca Mazzucco

MS0315
Computation for Energy Storage
Wei Lu

MS0318
Leveraging Reduced Descriptions to Accelerate Kinetic Simulations
Lee Ricketson, William Taitano

MS0319
Integrating Data Science and Multiscale Methods for Multiphysics Applications
Tim Wildey, Graham Harper
MS0321 Computational Multiscale Method of Solids and Structures
Shaoqiang Tang, Shan Tang, Zifeng Yuan

MS0322 Metamaterials and metasurfaces with odd physical properties
Yunche Wang, Yu-Chi Su

MS0323 Multiscale modelling of packing and flow of granular materials
Zongyan Zhou, Shibo Kuang, Shunying Ji, Qiang Zhou, Xizhong An, Mikio Sakai, Kun Luo

MS0324 Multiscale and Multiphysics Modelling of the Structural and Mechanical Properties of Energy Storage Materials
Chih-Hung Chen, Chun-wei Pao

MS0325 Multiphase flows: experiments, simulations, and modeling
Fu-Ling Yang, Shu-San Hsiau

MS0326 Multiscale Procedures in Composites and Heterogeneous Materials
Paul Steinmann, Guillermo Etse, Daya Reddy, Osvaldo Manzoli

MS0327 Multiscale Computational Approach and Informatics of Complex Structures and Advanced Materials
Maenghyo Cho, Seunghwa Yang, Hyunseong Shin

MS0328 Fundamental numerical methods towards accurate, efficient and practical simulations in industrial, environmental and biological applications
Satoshi Ii, Ryosuke Akoh, Chungang Chen, Xingliang Li

MS0329 Multi-scale modelling of generalised continua and metamaterials
Igor A. Rodrigues Lopes, Francisco M. Andrade Pires, Eduardo de Souza Neto

0400-Biomechanics and Mechanobiology

MS0401 Computational modelling and machine learning in biomechanics and biomedical engineering
Chi Wei Ong, Fangsen Cui, Hwa Liang Leo

MS0402 COMPUTATIONAL BIOMEDICINE AND BIOMECHANICS
Maxim Solovchuk, Tzyy-Leng Horng

MS0403 Molecular and Cellular Biomechanics
Wonmuk Hwang, Mohammad Mofrad

MS0404 COMPUTATIONAL BIOMECHANICS: ADVANCED METHODS AND EMERGING AREAS
Alessio Gizzi, Daniel E Hurtado, Michele Marino, Christian J Cyron

MS0405 Computational Biomechanics and Biomimetics of Flapping Flight
Daisuke Ishihara, Hao Liu, Shinobu Yoshimura

MS0406 Female pelvic floor biomechanics
Elisabete Silva, Luyun Chen

MS0407 Multiscale Modeling and Machine Learning in Biomechanics
Yaling Liu, Lucy Zhang, Ying Li, Jianxun Wang

MS0408 Modelling and simulation of thermo-mechanical effects in excitable tissues
Ricardo Ruiz Baier, Alessio Gizzi, Leo Cheng, Vijay Rajagopal

MS0409 Multiphysics and Data-driven Modeling for Cardiovascular Biomedicine
Debanjan Mukherjee, Adarsh Krishnamurthy, Ming-Chen Hsu
<table>
<thead>
<tr>
<th>MS0410</th>
<th>Computational Simulation and Prediction of Injury due to Blast Exposures, and Blunt and Ballistic Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gary Tan, Raj Gupta, Amit Bagchi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0411</th>
<th>Computational mechanobiology of musculoskeletal tissues</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pascal Buenzli, Junning Chen, Hanna Isaksson, Richard Weinkamer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0412</th>
<th>Modeling and simulation of biological cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luoding Zhu, Jared Barber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0413</th>
<th>ADVANCES IN COMPUTATIONAL BIOMECHANICS AND MECHANIOBIOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>David Pierce, Corey Neu, René Van Donkelaar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0414</th>
<th>Exploring brain mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Silvia Budday, Kristian Franze, Jochen Guck, Paul Steinmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0415</th>
<th>Spatial Mechanomics: Tools, methods, and results related to material heterogeneity in biomechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Emma Lejeune, Manuel Rausch, Adrian Buganza Tepole, Johannes Weickenmeier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0416</th>
<th>Imaging-informed computational modeling in medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rafael Grytz, Jessica Zhang, Michael Girard, Ian Sigal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0417</th>
<th>Computational multiscale modeling in biomechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Li-Wei Liu, Chia-Ching Chou, Shu-Wei Chang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0418</th>
<th>ADVANCES IN CHARACTERIZATION AND MODELING OF BIOLOGICAL SOFT TISSUES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tien-tuan Dao, Marie-Christine Ho Ba Tho</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0420</th>
<th>Modeling of the cardiovascular and cerebral system with application to clinical medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masanori Nakamura, Makoto Ohta, Marie Oshima, Juan Cebral, Anne Robertson, Khalid Saqr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0421</th>
<th>Musculoskeletal Biomechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Renate Sachse, Elisabeth Jensen, Rainer Burgkart, Sami Haddadin, Oliver Röhrle, Wolfgang A. Wall</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0422</th>
<th>Computational Continuum Biomechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tim Ricken, Oliver Röhrle, Silvia Budday</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0423</th>
<th>Multiscale biofluid mechanics: from cells to organs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ken-ichi Tsubota, Ming Dao, Toru Hyakutake, Xiaobo Gong</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0424</th>
<th>Computational Mechanics and Mechanobiology of the Shoulder Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ara Nazarian, Joseph DeAngelis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0425</th>
<th>Musculoskeletal Modeling Across the Lifespan: Biomechanics from Young to Aging to Aged</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Geoffrey Handsfield, Justin Fernandez, Vickie Shim, Thor Besier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0426</th>
<th>In silico clinical trials of cardiac disease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nenad Filipovic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0500-Materials by Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MS0502</td>
<td>COMPUTATIONAL MECHANICS OF SOFT MATTER</td>
</tr>
<tr>
<td></td>
<td>Zishun Liu</td>
</tr>
</tbody>
</table>
List of Minisymposia

MS0503
COMPUTATIONAL DESIGN OF ARCHITECTED MATERIALS
Julián Norato, José Guedes

MS0504
Virtual Multi-physics Computational Design and Manufacturing Simulation of Materials and Structures
Eric Li, JN Reddy, Guirong Liu, CW Lim, Vincent Tan, ZC He, Bing Li, Qiqi Li, Zhuoqun Zheng, Lei Deng, Yi Wu

MS0506
New Advances in Phase Change Materials
Santiago Madruga

MS0507
Multiscale Topology Optimization
Narasimha Boddeti

MS0508
Lessons from nature: design of bioinspired architected materials
Mohammad J. Mirzaali, Mario Milazzo, Flavia Libonati, Davide Ruffoni, Amir A. Zadpoor

0600-Fluid Dynamics and Transport Phenomena

MS0601
INTERFACIAL FLOW SIMULATION
Mostafa Safdari Shadloo, Amin Rahmat, Alessio Alexiadis, Mohammad Mehdi Rashidi

MS0602
Advanced multi-physics CFD simulations in science and engineering
Takahiro Tsukahara, Kaoru Iwamoto, Koji Fukagata, Mamoru Tanahashi, Nobuyuki Oshima, Makoto Yamamoto

MS0603
Modelling and simulation of coupled solvent transport and deformation
Jana Wilmers, Dai Okumura, Laurence Brassart, Nikolaos Bouklas

MS0604
Granular Flows: Modelling and Computational Challenges
Thomas Weinhart, Anthony R Thornton, Rudy Valette

MS0605
COMPLEX FLUID FLOWS IN ENGINEERING: MODELING, SIMULATION AND OPTIMIZATION
Stefanie Elgeti, Marek Behr

MS0607
Multiphase flows
Célio Fernandes, Luis Lima Ferrás, Alexandre Afonso

MS0608
Fluid Dynamical Laws and Transport Phenomena for Complex Dynamical Systems
Ricardo Tomás Ferreyra

MS0609
MODELLING OF ATOMIZATION, BREAKUP AND FRAGMENTATION OF FLUIDS
Stéphane Zaleski, Junji Shinjo, Leonardo Chirco, Gretar Tryggvason, Shiyi Chen

MS0610
Modeling and Simulation of Computational Multi-phase Flows
Yi-Ju Chou, Yang-Yao Niu

MS0611
Multiphase flows with non-Newtonian materials: simulation, experiment, and machine learning
Anselmo Pereira, Rudy Valette, Elie Hachem, Manuel Alves, Alvaro Coutinho

MS0612
Collisional Kinetic modeling in classical and plasma dynamics: numerical methods and non-linear analysis
Irene M. Gamba, Jeffrey R. Haack, Milana Pavic-Colic

MS0613
Computational fluid dynamics and heat transfer
KUANG Lin, Chuan Chieh Liao
0700-Numerical Methods and Algorithms in Science and Engineering

MS0701
Numerical techniques for the simulation and model reduction of complex physical systems
Thomas Hudson, Xingjie Li

MS0702
Isogeometric Methods
Alessandro Reali, Yuri Bazilevs, David J. Benson, René de Borst, Thomas J.R. Hughes, Trond Kvamsdal, Giancarlo Sangalli, Clemens V. Verhoosel

MS0703
Developments and Applications of Discrete Element Method in Modelling and Simulation of Granular Systems
Xihua Chu, Wenjie Xu, Zongyan Zhou, Mikio Sakai

MS0704
Stabilized, Multiscale and Multiphysics Methods
Guillermo Hauke, Arif Masud, Isaac Harari

MS0705
Domain Decomposition and Large-scale Computation
MASAO Ogino, Amane Takei, Qinghe Yao, Sin-Ichiro Sugimoto

MS0706
DATA-BASED ENGINEERING & COMPUTATIONS
Francisco Chinesta, Elias Cueto, Charbel Farhat, Pierre Ladeveze, Francisco Javier Montans

MS0707
Advance and Application of Meshfree Methods
Judy Yang, Chia-Ming Fan, Pai-Chen Guan, Tsung-Hui Huang, Kuan-Chung Lin

MS0709
Recent Advances in Meshfree and Particle Methods
Seiya Hagihara, Mitsuteru Asai, Ha Hong Bui, Fei Xu, Seiichi Koshizuka

MS0710
Computational Particle Dynamics
Moubin Liu, Dianlei Feng, Christian Weißenfels

MS0711
Smoothed Finite Element Methods and Other Advanced FEMs
Yuki Onishi, Gui-Rong Liu, Masaki Fujikawa, Quan Bing Eric Li

MS0712
Boundary Element Methods and Mesh Reduction Methods
Xiao-Wei Gao

MS0713
Advances and Applications of Meshfree and Particle Methods
Jiun-Shyan Chen, Frank Beckwith, Zhen Chen, Mike Hillman, Marc Schweitzer, Mike Tupek, Dongdong Wang, CT Wu, Pai-Chen Guan

MS0714
Meshfree and Other Advanced Numerical Methods for Engineering and Applied Mathematical Problems
Lihua Wang, Chuanzeng Zhang, Zheng Zhong

MS0715
Multi-scale numerical methods for non-linear solids problems
Frédéric Lebon, Isabelle Ramière

MS0716
Model order reduction for parametrized continuum mechanics systems
Youngsoo Choi, Masayuki Yano, Matthew Zahr

MS0717
Modeling and Simulation of Polymer Fluids
Xiaodong Wang, Puyang Gao, Jin Su

MS0719
ADVANCES IN NUMERICAL METHODS FOR LINEAR AND NON-LINEAR DYNAMICS AND WAVE PROPAGATION
Alexander Idesman, Hauke Gravenkamp
List of Minisymposia

MS0720 Numerical models applied in architectonic and engineering design
Janusz Rębielak

MS0721 RECENT ADVANCES ON POLYTOPAL METHODS
Franco Dassi, André Harnist, Xin Liu, Ilario Mazzieri

MS0722 High-order numerical methods for compressible flow and turbulence
Lin Fu, Feng Xiao

MS0724 Non-Newtonian fluid flows: Numerical schemes and computational simulations
Hirofumi Notsu, Cassio M. Oishi

MS0725 Towards Next-Generation Aircraft Design with High-Fidelity Simulation Technologies
Yoshiaki Abe, Keiichi Shirasu, Tomonaga Okabe, Shigeru Obayashi

MS0726 High Performance Computing in Biomechanics
Xiao-Chuan Cai, Rongliang Chen

MS0727 Multi-level iterative solvers for finite element systems
Matthias Mayr, Martin Kronbichler, Santiago Badia

MS0728 Efficiency and reliability in biomedical modeling: computational and mathematical advances
Simona Perotto, Nicola Ferro, Hiroshi Suito

MS0729 Advances in High-Order Methods for Computational Fluid Dynamics
Krzysztof Fidkowski, Per-Olof Persson, Chunlei Liang, Ngoc Cuong Nguyen

MS0730 Structure-preserving model reduction for nonlinear systems
Boris Kramer, Yuto Miyatake

MS0731 Advances in Rigorous and Agile Coupling of Conventional and Data-Driven Models for Heterogeneous Multi-Scale, Multi-Physics Simulations
Pavel Bochev, Paul Kuberry, Irina Tezaur

MS0732 COMPUTATIONAL MODELLING AND EXPERIMENTAL IMAGING OF GRANULAR AND MULTIPHASE SYSTEMS: TOWARD IMPROVED VALIDATION AND SYNERGISTIC APPLICATION
Kit Windows-yule, Jonathan Seville

MS0733 Advanced Numerical Methods and Related Software Development
Amane Takei, Mohamed Shadi, Gabriel Wittum, Ryuji Shioya

MS0734 Discretization methods and software tools for the simulation of complex fractured media in computational geophysics
Patrick Zulian, Marco Favino, Maria Nestola, Rolf Krause

MS0737 Semi-analytical numerical methods and their applications in mechanics and engineering
Zhuojia Fu, Rui Li, Leiting Dong, Xiang Liu

MS0738 Nonlinearly Stable High-Order Methods for Partial Differential Equations
Siva Nadarajah, David Del Rey Fernández, Takanori Haga

MS0739 Quantum Horizons for Computational Mechanics
Suvaranu De, Vikram Gavini, Veera Sundararaghavan, Eiji Tsuchida, Amartya Banerjee

MS0740 Machine learning methods for adaptive mesh refinement and finite element discretization
Brendan Keith, Maciej Paszynski

MS0741 NUMERICAL METHODS FOR BUCKLING ANALYSIS AND DESIGN OF THIN-WALLED STRUCTURES
Peng Hao, Yujie Guo, Ke Liang
List of Minisymposia

MS0742
High-Order discretization of steady and unsteady biharmonic problems: Applications in elasticity and fluid dynamics
Jean-Pierre Croisille, Matania Ben-Artzi, Dalia Fishelov

MS0743
ADVANCES IN INTRUSIVE AND NON-INTRUSIVE ORDER REDUCTION TECHNIQUES FOR FLOW ANALYSIS, CONTROL AND OPTIMIZATION
Marco Fossati, Annalisa Quaini, Gianluigi Rozza

MS0744
Multilevel Discretization of Mixed Variational Formulations
Constantin Bacuta, Hengguang Li

MS0745
Waves: Advanced Numerical Methods and Applications
Reza Abedi, Robert Haber, Tamas Horvath

MS0747
Accurate and Efficient Solution Remapping Strategies for Coupled Multiphysics Systems
Vijay Mahadevan, Paul Ullrich

MS0748
Computational modeling and simulation of discontinuities
Amine Benzerga, Christian Brandl, Vincent Chiaruttini, Enrique Martinez, Ryan Sills, Ashley Spear, Aurélien Vattré

MS0751
Boundary Element Method: Fundamentals and Applications
Toru Takahashi, Toshiro Matsumoto, Yijun Liu, Hitoshi Yoshikawa, Takahiro Saitoh, Hiroshi Isakari, Kazuki Niino

0800-Verification and Validation, Uncertainty Evaluation and Error Estimation

MS0801
DATA-DRIVEN, SURROGATE, PHYSICS-INFORMED AND GREY-BOX MODELLING FOR TREATING RANDOMNESS AND IMPRECISION IN COMPUTATIONAL ENGINEERING
Matthias Faes, Stefano Marelli, Jean-Marc Bourinet, Enrico Zio

MS0802
COPING WITH RANDOMNESS AND IMPRECISION IN COMPUTATIONAL MECHANICS
Matthias Faes, Pengfei Wei, Xiukai Yuan, Jingwen Song, Marcos Valdebenito, Michael Beer

MS0803
Quality of model prognosis - from lab data to structural performance
Jörg F. Unger, Steffen Freitag, Daniel Straub, Bruno Sudret, Francisco Chinesta, Michael Beer, Phaedon-Stelios Koutsourelakis

MS0804
Physics-Based Data-Driven Modeling and Uncertainty Quantification in Computational Materials Science and Engineering
Johann Guilleminot, Michael Shields, Lori Graham-Brady, Kirubel Tefera

MS0805
Certification of Computer Simulations and Adaptive Modeling
Serge Prudhomme, Ludovic Chamoin, Jens Lang, Fredrick Larsson, Juan José Ródenas García

MS0806
Verification techniques in computational physics and applied mathematics
Brian Freno, Luís Eça

MS0807
Numerical Analysis and Design with Polymoric Uncertainties – Advanced Methods and Strategies
Michael Kaliske, Wolfgang Graf, Sigrid Leyendecker, Stefanie Reese

MS0808
Numerical methods for verification, validation and uncertainty quantification in manufacturing, civil engineering, advanced materials and biomechanics
Naoki Takano, Kazumi Matsui, Heoung-Jae Chun, Vittorio Sansalone, Tetsuya Matsuda, Shuji Moriguchi

MS0809
Uncertainty Quantification in Particle-Based Simulations of Fluids, Polymers, and Soft Matter
Gerald Wang
<table>
<thead>
<tr>
<th>MS0902</th>
<th>Modelling of Structural Instability, Structural Collapse and Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>José Santelli</td>
</tr>
<tr>
<td>MS0903</td>
<td>Vehicle Scanning Method for Bridges</td>
</tr>
<tr>
<td></td>
<td>Yeong-bin Yang, Jong-Dar Yau, Judy P. Yang, Zhilu Wang</td>
</tr>
<tr>
<td>MS0904</td>
<td>Shell and spatial structures</td>
</tr>
<tr>
<td></td>
<td>Francesco Marmo, Stefano Gabriele, Amedeo Manuelli Bertetto, Andrea Micheletti</td>
</tr>
<tr>
<td>MS0905</td>
<td>Digital twins for the design and optimisation of lightweight structures</td>
</tr>
<tr>
<td></td>
<td>Carol Featherston, David Kennedy, Zhangming Wu, Abhishek Kundu</td>
</tr>
<tr>
<td>MS0906</td>
<td>New numerical methods for slender bodies and their interactions</td>
</tr>
<tr>
<td></td>
<td>Ignacio Romero, Christoph Meier, Joaquim Linn, Bastian Oesterle</td>
</tr>
<tr>
<td>MS0907</td>
<td>Multiscale mechanics of soft networks: from nonwovens to polymers and living tissues</td>
</tr>
<tr>
<td></td>
<td>Franck Vernerey, Nikolaos Bouklas, Catalin Picu</td>
</tr>
<tr>
<td>MS0908</td>
<td>NON-MATERIAL MODELLING OF AXIALLY MOVING CONTINUA: ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION IN STRUCTURAL MECHANICS</td>
</tr>
<tr>
<td></td>
<td>Yury Vetyukov, Alexander Humer, Josef Kiendl</td>
</tr>
<tr>
<td>MS0909</td>
<td>New Advances in Computational Modelling and Seismic Intervention Techniques of Historical Masonry Structures</td>
</tr>
<tr>
<td></td>
<td>Francesco Clementi, Antonio Formisano, Gabriele Milani</td>
</tr>
<tr>
<td>MS0910</td>
<td>Adaptive Engineering Structures</td>
</tr>
<tr>
<td></td>
<td>Malte von Scheven, Manfred Bischoff, Michael Böhm, Oliver Sawodny, Lucio Blandini</td>
</tr>
<tr>
<td>MS0911</td>
<td>Digital Twins and Uncertainty Quantification in Structural Dynamics</td>
</tr>
<tr>
<td></td>
<td>Thiago Ritto, Anas Batou, David Barton, David Wagg</td>
</tr>
<tr>
<td>MS0912</td>
<td>Guided Wave-Based Structural Condition Assessment</td>
</tr>
<tr>
<td></td>
<td>Eleni Chatzi, Konstantinos Agathos, Rohan Soman, Wieslaw Ostachowicz</td>
</tr>
<tr>
<td>MS0913</td>
<td>Recent advances in semi-analytical approaches related to moving load problems</td>
</tr>
<tr>
<td></td>
<td>Zuzana Dimitrovoň, Piotr Koziol</td>
</tr>
<tr>
<td>MS0914</td>
<td>MODELING AND SIMULATION OF FUNCTIONALLY GRADED AND MULTIFUNCTIONAL MATERIALS STRUCTURES</td>
</tr>
<tr>
<td></td>
<td>Justin Murin, Stephan Kugler, Vladimir Kutis</td>
</tr>
<tr>
<td>MS0915</td>
<td>Finite element time-history analysis of structural systems and contents subjected to dynamic actions and interactions</td>
</tr>
<tr>
<td></td>
<td>Gloria Terenzi, Stefano Sorace</td>
</tr>
<tr>
<td>MS0916</td>
<td>Data-Driven Computational Methods and Model Order Reduction for Structures, Structural Dynamics, and Aeroelasticity</td>
</tr>
<tr>
<td></td>
<td>Haeseong Cho, Sang-Joon Shin</td>
</tr>
<tr>
<td>MS0917</td>
<td>Origami engineering aided by computational mechanics</td>
</tr>
<tr>
<td></td>
<td>Ichiro Hagiwara, Arzu Sorguç</td>
</tr>
<tr>
<td>MS0918</td>
<td>Dynamic performance of ceramic composites and composite structures</td>
</tr>
<tr>
<td></td>
<td>Eligiusz Postek, Tomasz Sadowski</td>
</tr>
</tbody>
</table>
List of Minisymposia

MS0920
Statics and Dynamics of Composite Structures and Metamaterials
Jarosław Latalski, Alireza Ture Savadkoohi, Daniele Zulli

MS0921
Advanced structural mechanics of smart and adaptive structures
Rao B.N., Ayan Haldar

MS0922
Advanced computational methods for wave analysis and their application
Sohichi HIROSE, Takahiro SAITO, Taizo MARUYAMA, Zhenghua Qian, Bing Wang

MS0923
Modeling of Damping
Chin-long Lee, Athol Carr

MS0924
Structural Instability in Earthquake Engineering
Tung-Yu Wu, Omar Sediek, Hsiao-Hui Hung

MS0927
RECENT ADVANCES IN RAILWAY DYNAMICS NUMERICAL MODELLING
Santiago Gregori, Stefano Bruni

MS0929
Nonlinear computational structural dynamics in rotating turbomachinery
Evangéline Capiez-Lernout, Christian Soize, Christophe Desceliers, Marc Mignolet

MS0931
Advances of Vehicle-Bridge Interaction Dynamics
Jong-Dar Yau

1000-Manufacturing and Materials Processing

MS1001
Modeling and Simulation for Additive Manufacturing
Albert To, Yuichiro Koizumi, Andreas Lundback, Stefan Kollmannsberger, Akihiro Takezawa, Ferdinando Auricchio, Massimo Carraturo, Simone Morganti, Mamzi Afsaabi

MS1003
Modeling, Simulation and Optimization of Functional Materials and Advanced Manufacturing
Mahdi Bodaghi, Frederic Demoly, Giulia Scalet, Oliver Weeger, Ali Zolfagharian

MS1004
Additive Manufacturing of Polymers - Towards the Digital Twin
Dominic Soldner, Katrin Wudy, Julia Mergheim

MS1005
Shape Optimization for Large-Scale Problems
Long Chen, Nicolas R. Gauger, Kai-Uwe Bletzinger

MS1007
MODELING AND SIMULATION APPROACHES OF METAL ADDITIVE MANUFACTURING ON PART-SCALE
Christoph Meier, Michele Chiumenti, Neil E. Hodge, Miguel Cervera, Wolfgang A. Wall

MS1010
MANUFACTURING PROCESS MODELING AND THE EFFECTS OF MANUFACTURING ON THE MECHANICAL PERFORMANCE OF COMPOSITES
Patrick De Luca, Anais BARASINSKI, Kiyoshi UZAWA, Anthony WAAS

1100-Atomistic, Nano and Micro Mechanics of Materials

MS1101
Multiscale Modeling for Materials
Yuchieh Lo, I-Ling Chang, Chang-Wei Huang

MS1102
Computational Nanomechanics and Nanoscale Thermal Transport
Haifei Zhan, Gang Zhang, Yuan tong Gu
MS1103 Composites, Bio-composites and Nanocomposites
Jia-Lin Tsai, Jia-Yang Juang

MS1104 Deformation Analysis of Carbon Nanomaterial with Lattice Defects
Yi-Lun Liu, Jin-Xing Shi, Xiao-Wen Lei

MS1105 Modeling and Simulation of Materials under Harsh Environments
Keonwook Kang, Byeongchan Lee, Seunghwa Ryu, Akiyuki TAKAHASHI

MS1106 Nanomechanics of defects in crystalline materials
Tomotsugu Shimokawa, Takahiro Shimada, Ryosuke Matsumoto, Hajime Kimizuka

MS1107 Modeling Mechanics of Materials with Voids
Matthew Lewis, Gary Gladysz

MS1108 Topological Defects in Mechanics, Mathematics, Physics, and Beyond
Gerald Wang, Amit Acharya, Franziska Weber

MS1109 Frontier in nano-scale graphene and AI-assisted design of graphene-like architect materials
Zhao Qin, Chi-Hua Yu

1200-Modeling and Analysis of Real World and Industry Applications

MS1201 NON-CONVENTIONAL METHODS FOR SOLID AND FLUID MECHANICS (NMSFM)
Wojciech Sumelka, Tomasz Blaszczyk, Hongguang Sun, Jacek Leszczynski, Giuseppe Failla

MS1202 MODELING METHODS, SIGNAL ALGORITHMS AND MACHINE LEARNING FOR EFFECTIVE NON-DESTRUCTIVE TESTING AND STRUCTURAL HEALTH MONITORING
Menglong Liu, Gongfa Chen, Fangsen Cui

MS1203 Nonlocal models in computational mechanics: perspectives, challenges, and applications
Mirco Zaccariotto, Marta D'Elia, Ugo Galvanetto, Pablo Seleson

MS1204 Combined finite-discrete element methods for multi-body dynamics and fracture mechanics
Ado Farsi

MS1205 Real World Modeling and Simulation for the realization of Human-centered Society 5.0
Tohru Hirano, Seiichi Koshizuka

MS1206 Condition assessment of railway infrastructures
Pedro Montenegro, Munemasa Tokunaga, Matsuoka Kodai, Diogo Ribeiro

MS1207 Offshore Wind Power: Large Scale Modeling and Assessment for the Realization of Net-zero World
Takanori Uchida

MS1208 Industrial Application of Particle Methods
Sunao Tokura, Massimo Galbiati, Brant Ross, Mamika Kawahara

MS1209 Advanced Computing Technique and Artificial Intelligence for Realistic Social, Traffic and Economic Problems
Hideki Fujii, Eisu Kita, Tomoaki Tatsukawa, Shinobu Yoshimura

MS1211 Particle and Finite Element Models for Interaction, Simulation and Statistical Design
Masakazu Ichimiya, Nobuki Yamagata, Jeffrey Fong, Robert Rainsberger, Pedro Marcal
MS1213 Modeling & Simulation of Terrestrial Flows (Terrestrial (Geosphere) hydrologic/hydraulic flow modeling & simulation)
 Hiroyuki Tosaka, Makoto Nishigaki, Tomochika Tokunaga, Masaatsu Aichi, Tomonari Shiraishi

MS1214 Advanced Modelling for Automotive Applications in CASE Era
 Tohru Hirano, Kosho Kawahara, Masato Nishi, Maurizio MAGGIORE

MS1215 Image Processing, Discretization, and Simulation of As-Built Geometries
 Scott Roberts, Nagi Mansour, David Noble

MS1216 Solid Mechanics of Elastomers
 Hiro Tanaka, Hiroshi Kadowaki

MS1217 Analysis of Real World and Industry Applications: emerging frontiers in CFD computing, machine learning and beyond
 Eleni Koronaki, Anina Šarkić Glumac, Stéphane P.A. Bordas

MS1218 Industrial Perspectives on Isogeometric Analysis and Design with Advanced Spline Techniques
 Panagiotis Karakitsios, Vasiliki Tsotoulidi

MS1219 Cyclic plasticity and viscoplasticity modeling for various alloys and components
 Tasnim Hassan, Katsuhiro Sasaki

MS1220 HPC application on turbulent wind over urban model represented by individual shape of buildings
 Tetsuro Tamura, Yasuaki Ito, Hidenori Kawai

1300-Inverse Problems, Optimization and Design

MS1301 Computational structural design for architecture and civil engineering
 Makoto Ohsaki, Sigrid Adriaenssens, Ruy Pauletti, Yohei Yokosuka

MS1302 Model Learning and Optimization for Nonlocal and Fractional Equations
 Yue Yu, Marta D’Elia, Xingjie Li

MS1303 ANALYSIS AND DESIGN OF STRUCTURAL DYNAMICAL SYSTEMS UNDER UNCERTAIN CONDITIONS
 Hector Jensen, Jianbing Cheng, Marcos Valdebenito, Ioannis Kougionoumtzoglou, Dixiong Yang

MS1304 Optimization Method and Application
 Eisuke Kita, Kazuhiro Izui, Masatoshi Shimoda, Satoshi Kitayama, Masayuki Nakamura

MS1305 New Trends in Topology Optimization
 EMILIO CARLOS NELLI SILVA, Shinji Nishiwaki, Yoon Young Kim, Glaucio Paulino, Gregoire Allaire,
 Daniel De Leon, Renato Picelli

MS1306 Topological Design Optimization of Structures, Machines and Materials
 Gil Ho Yoon, Akihiro Takezawa, Weisheng Zhang

MS1307 Machine Learning and Uncertainty Quantification for Materials Design
 Vahid Keshavarz-zadeh, Arash Noshadravan, Johann Guilleminot

MS1308 OPTIMIZING CIVIL STRUCTURES DESIGN – HOW TO ADDRESS MULTIMATERIAL, MULTICRITERIA AND MULTIPHYSICS PROBLEMS TO REDUCE THE GLOBAL CARBON FOOTPRINT
 Fabrice Gatuingt, Guillaume Hervé-Secourgeon, Tulio Honorio de Faria

MS1309 Recent progress in topology optimization and its applications
 Junji Kato, Mathias Wallin, Niels Aage, Oded Amir, Bin Niu, Liang Xia, Mingdong Zhou, Peter Dunning
MS1311 ADVANCED APPROACHES FOR OPTIMIZATION OF COMPOSITE STRUCTURES
 Elena Raponi, Simonetta Boria, Carola Doerr, Fabian Duddeck, Dirk Lukaszewicz

MS1314 STATISTICAL INVERSE PROBLEMS AND RELATED STOCHASTIC OPTIMIZATION METHODS FOR RANDOM HETEROGENEOUS MATERIALS
 Florent Pled, Christophe Desceliers, Maarten Arnst

MS1315 Engineering Metamaterials: Rational Design and Additive Manufacturing
 Zhen Luo, Yiqiang Wang, Hao Li

1400-Software, High Performance Computing

MS1401 PSE (Problem Solving Environment)
 Shinji Hioki, Masami Matsumoto, Shigeo Kawata

MS1402 Software Design and Implementation for Next-Generation Parallel Architectures
 David Littlewood, Henry Tufo, Hiroshi Okuda, Reese Jones

MS1403 Advanced HPC Methods for Eigenvalue Problems and Beyond
 Ali Hashemian, David Pardo, Victor Calo, Carla Manni, Quanling Deng

MS1404 Progress and Challenges in Extreme Scale Computing and Data
 Michael Heroux, Serge Petiton, Kengo Nakajima

MS1405 HPC-BASED SIMULATIONS AND DATA SCIENCE FOR THE WIDE INDUSTRIAL REALM: AEROSPACE, AUTOMOTIVE, BIOMEDICAL, CONSTRUCTION, HEAVY...
 Makoto Tsubokura, Mariano Vázquez, Takayuki Aoki, Andreas Lintermann

MS1406 Portable, Efficient Implementation of Finite Elements for Mechanics Applications
 Kyungjoo Kim, Mauro Perego, Nathan Roberts

1500-Fluid-structure Interaction, Contact and Interfaces

MS1501 Computational Contact Mechanics
 Peter Wriggers, Michel Raous, Giorgio Zavarise, Mike Puso

MS1502 Fluid-Structure Interaction Algorithms and Applications
 Justin Kauffman, Scott Miller, John Gilbert

MS1503 Recent Advances in Numerical Methods for Multi-Material Shock Hydrodynamics
 Ketan Mittal, Nabil Atallah, Vladimir Tomov, Guglielmo Scovazzi, Robert Rieben

MS1505 Computational Fluid-Structure Interaction and Moving Boundaries and Interfaces
 Artem Korobenko, Jinhui Yan, Ming-Chen Hsu, Kenji Takizawa, Yuri Bazilevs, Tayfun Tezduyar

MS1506 Challenges and locks for fluid-structure interaction: from vibrations to non-linear transients in industrial framework
 Vincent Faucher, Olivier Jamond, Nicolas Lelong, Benoit Prabel, Maria-Adela Puscas

 Ming-jyh Chern, Chao-An Lin, Tzuy-Leng Horng

MS1508 IMMERSED BOUNDARY METHOD AND ITS NOVEL APPLICATIONS
 Li Wang, Fang-Bao Tian, Wei-Xi Huang, Zhengliang Liu, Yi Zhu
1600-Geomechanics and Natural Materials

MS1602 Computational Geomechanics
Jinhyun Choo, José Andrade, Chloé Arson, Ronaldo Borja, Richard Regueiro, WaiChing Sun, Jidong Zhao

MS1603 Computational Methods for Snow Mechanics and Engineering
Fabrizio Barpi, Gianmarco Vallero, Monica Barbero, Mauro Borri-Brunetto, Valerio De Biagi

MS1604 Machine learning in geomechanics and geomaterials
Jianfeng Wang

MS1605 Validation of Numerical Modeling of Soil-Structures Interaction in Liquefiable Soils
Majid Manzari, Kyohei Ueda

MS1607 Multiscale, Multifield, and Continuum-Discontinuum Analysis in Geomechanics
Haitao Yu, Qiushi Chen, Yiming Zhang, Xueyu Geng, Ningning Zhang, Hui Wang, Yunteng Wang

MS1608 Particle-based numerical modeling in Geotechnical engineering
Yukio Nakata, Kenichi Soga, Mingjing Jiang, Shuji Moriguchi

MS1609 Advanced computational modelling of wood, wood-based products, and timber structures
Josef Füssl, Markus Lukacevic, Josef Eberhardsteiner, Michael Kaliske

MS1610 Numerical methods in geomechanics
Ryosuke Uzuoka, Kazunori Fujisawa, Toshihiro Noda, Feng Zhang

MS1611 Computational Granular Mechanics
Hongyang Cheng, Klaus Thoeni, Xue Zhang, Vanessa Magnanimo

MS1612 Multiscale Modeling and Numerical Stress Analysis of Prestressed Rocks
Vladimir Levin, Konstantin Zingerman, Anatoly Vershinin

MS1613 Challenges in sea ice mechanics research – experimental investigation, theoretical description and numerical simulation
Jörg Schröder, Carina Schwarz, Doru C. Lupascu, Tim Ricken, Marcello Vichi, Sebastian Skatulla

MS1614 Recent Advances in Computational Geomechanics
Nasser Khalili, Mohammad Vahab, Babak Shahbodagh

1700-Data Science, Machine Learning and Artificial Intelligence

MS1701 Applications of Artificial Intelligence and Machine-Learning Methods to Mechanics, Materials, Medicine, and Engineering
Shaofan Li, Vickie Shim, Ying Li, Harold Park, Shingo Urata

MS1702 Machine Learning for Cardiac Modelling and Simulation
Simone Pezzuto, Francisco Sahli Costabal, Rolf Krause, Hermenegild Arevalo, Luca Dedé

MS1703 Incorporating fundamental principles in innovative machine learning models of physics
Reese Jones, Ari Frankel, Cosmin Safta, Nathaniel Trask

MS1704 Deep Learning in Computational Materials Science and Engineering
Shaoping Xiao
List of Minisymposia

MS1705
Data-driven and Machine learning Method for turbulence, Fluid Loads, and fluid-structure Interaction
GANG CHEN, WEIWEI ZHANG, HUI TANG, Richard P. Dwight

MS1706
Decision-making in large-scale atomistic material simulations
Danny Perez, Thomas Swinburne

MS1707
Uncertainty Quantification for Data-Intensive Inverse Problems and Machine Learning
Tan Bui-thanh, Andreas Mang

MS1708
Machine Learning Based Design of Composite Materials and Structures
Seunghwa Ryu, Grace Gu, Shu-Wei Chang, Zhao Qin

MS1710
Numerical Simulations and Machine Learning for Micro-Meteorology Predictions and Applications
Ryo Onishi, Kai Schneider, Tomoaki Watanabe, Shaoxiang Qian, Keigo Matsuda

MS1711
Learning models for reliable predictions and decision making: methods and applications
Laura Mainini, Matteo Diez

MS1712
Machine Learning and Computational Modeling for Mechanical Behavior of Materials
C-S David Chen, C.T. Wu, Nien-Ti Tsou

MS1713
Deep and Machine Learning Methodology in the Context of Application to Computational Mechanics
Yasushi Nakabayashi, Yoshitaka Wada, Masao Ogino, Akio Miyoshi, Shinobu Yoshimura

MS1714
Advances in scientific machine learning for high dimensional many-query problems
Thomas O’Leary-Roseberry, Peng Chen, Omar Ghattas

MS1715
Intelligent design optimization of structural and mechanical systems
Jun Yan, Bin Niu

MS1716
Data-driven approaches in computational solid mechanics
Pietro Carrara, Francisco Chinesta, Laura De Lorenzis, Siddhant Kumar, Pierre Ladeveze, Michael Ortiz, Stefanie Reese

MS1717
Recent Advances in Scientific Machine Learning and Uncertainty Quantification Methods for Modeling Complex Systems
Ramin Bostanabad, Miguel Bessa

MS1718
Machine Learning-Based Computational Methods in Engineering Mechanics
Alessandro Fascetti, John Brigham, Caglar Oskay

MS1719
Advances in data-driven methods through Gaussian processes
Mengwu Guo, Anirban Chaudhuri

MS1720
Machine-Learning Accelerated Inverse Design
Aditya Balu, Olga Wodo, Adarsh Krishnamurthy, Baskar Ganapathysubramanian

1800-Imaging, Visualization, Virtual Reality and Augmented Reality

MS1802
Computer Vision on Structural Experiments, Inspection, and Monitoring
Yuan-sen Yang
2100-Environmental, Energy and Resource Engineering

<table>
<thead>
<tr>
<th>MS2101</th>
<th>Computational Mechanics for Nuclear Waste Disposal Technologies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shin Sato, Shinya Tachibana, Stratis Vomvoris</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2102</th>
<th>COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID FLOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clint Dawson, Kazuo Kashiyma, Ethan Kubatko, Eirik Valseth</td>
</tr>
</tbody>
</table>

2200-Disaster Prevention and Mitigation, Safety Problems

<table>
<thead>
<tr>
<th>MS2201</th>
<th>Advanced Computational and Experimental Technologies for Civil Infrastructures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sukhoon Pyo, Beomjoo Yang, H.K. Lee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2202</th>
<th>Frontiers of Nonlinear, Impact and Instability Analysis of Solids and Structures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Daigoro Isobe, Kostas Danas, Jinkoo Kim, Sergio Turteltaub, Dai Okumura,</td>
</tr>
<tr>
<td></td>
<td>Shingo Ozaki, Hiroyuki Yamada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2203</th>
<th>Hyper-complex disaster simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mitsuteru Asai, Antonia Larese De Tetto, Miguel Ángel Celigueta, Shunichi</td>
</tr>
<tr>
<td></td>
<td>Koshimura, Kenjiro Terada</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2204</th>
<th>Simulation-based Disaster Prediction and Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dongdong Wang, J.S. Chen, Sheng-Wei Chi, Pai-Chen Guan, Mike Hillman, Xiong</td>
</tr>
<tr>
<td></td>
<td>Zhang</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2205</th>
<th>Microstructural characterization and property evaluation of materials for structural safety</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kyoungsoo Park, Tong-Seok Han</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2206</th>
<th>Advanced seismic response analysis and design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tomoshi Miyamura, Takuzo Yamashita, Daigoro Isobe, Makoto Ohsaki</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2208</th>
<th>Physics-based Simulation of Earthquake Hazards with HPC and HQC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Takane Hori, Tsuyoshi Ichimura, Mitsuteru Asai, Thorsten Becker</td>
</tr>
</tbody>
</table>

2300-Infectious Diseases and Environmental Problems

<table>
<thead>
<tr>
<th>MS2301</th>
<th>Recent advances in modeling and simulating infectious disease outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tan Bui-thanh, Leticia Ramirez, Jose Montoya-Laos</td>
</tr>
</tbody>
</table>

2400-Others

<table>
<thead>
<tr>
<th>MS2401</th>
<th>Recent advances on numerical methods and parallel solvers for the cardiac function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Luca F. Pavarino, Simone Scacchi, Christian Vergara</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2403</th>
<th>Numerical Methods for Solving Frictional Quasistatic Contact Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nicolae Pop</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2404</th>
<th>Reliability of Robots</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Xu Han, Shuyong Duan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2405</th>
<th>Benchmark technologies and cases for computational acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weikang Jiang, Haijun Wu</td>
</tr>
</tbody>
</table>
Scientific Contents

Plenary Lectures

Designing flexoelectric metamaterials through computational strain gradient engineering
Irene Arias

Fracture and flow in porous media: a two-scale approach and spline-based discretisation
René de Borst

Computational mechanics-based digital twin for model predictive control of autonomous UAV landing in adverse conditions
Charbel Farhat

From engineered metastructures to natural seismic metamaterials: theory, computational aspects and experiments
C.W. Lim

Development of new rocket propulsion system "Rotating Detonation Engine"
Akiko Matsuo

Computational hemodynamics for clinical applications - crossroad between patient-specific simulation and machine-learning techniques
Marie Oshima

Semi-Plenary Lectures

Deep materials modeling and design
Chuin-Shan (David) Chen

Empowering data-informed engineering from smarter data, sensing and hybrid modelling
Francisco Chinesta

Machine-learning based computational mechanics as a powerful tool for engineering and science
Yuanfong Gu

Discrete crack models in regularized fracture mechanics for mesh-based and mesh-free methods
Michael Kaliske

Opportunities for Machine Learning in Computational Mechanics
Ellen Kuhl

On law- and data-based methods
Gui-Rong Liu

A semi-resolved CFD-DEM approach for particulate flows with thermal convection
Moubin Liu

Hierarchical Deep Learning Neural Network (HiDeNN)-FEM-AI for process design and performance prediction of material systems
Wing Kam Liu

Recent advances of constitutive models of soft smart materials - from molecular, network scales to continuum scale
Zishun Liu

Wings at low Reynolds numbers and lifting line theory
Sanjay Mittal

Isogeometric analysis: some recent advances and applications
Alessandro Reali

Parametric model order reduction for fluid and structure objects
SangJoon Shin

A Topology Optimization Approach Towards Fluid Flow Design Problems
Emilio Silva

Prediction of fatigue crack propagation using effective regularization techniques for regression problems
Yoshitaka Wada

Virtual elements in engineering sciences
Peter Wriggers
Mechanical Stimuli in Prediction of Trabecular Bone Adaptation: Numerical Comparison

Katerina Smotrova, Simin Li, Vadim V. Silberschmidt

1062 Numerical Modeling of Compression Molded and Shear Enhanced Carbon / Ultra-High-Molecular-Weight-Polyethylene Nanocomposites

Katerina Miroshnichenko, Stanislav Buklovskyi, Konstantyn Vasylevskyi, Igor Tsukrov, Hannah J. Favreau, Peder C. Solberg, Douglas W. Van Citters

Microstructure-based modelling of thermomechanical behaviour of cast irons

Evangelia Nektaria Palkanoglou, Minghua Cao, Konstantinos P. Baxevanakis, Vadim V. Silberschmidt

Harmful Microstructures in Fatigue: Influence of Grain Morphologies and Orientations on Local Stress Distributions

Rémy Serre, Carole Nadot-Martin, Philippe Bocher

Experimental and Theoretical Research on the Cyclic Deformation of NiTi Alloys after Hydrogen Charging

Han M. Jiang, Guozheng Kang, Chao Yu, Qianhua Kan

Microstructure-based Thermochemical Ablation Model of C/C Fiber Composites

Xiaobin Wang, Peng Jiang, Weixu Zhang

A Multiscale Computational Framework for the Simulation of Graphene Nanoplatelets

Panagiotis Gavallis, Dimitrios Savvas, George Stefanou

Enhanced Interlaminar Performance and Impact Resistance of Novel Magnesium-based Fiber-Metal Laminates

Xia Zhou, Biao Yang, Guohui Qu

An analytical method for predicting the weathering-induced degradation of slope

Sharmil Bhowmik, Kikumoto Mamoru, Masashi Nagata

Updated-Lagrangian XFEM Formulation for Ductile Fracture at Large Strain

Antonio Kaniadakis, Jean-Philippe Créted, Patrice Longère

A 3-D Generalized/Extended FEM Simulation of Hydraulic Fracture Experiments and Multiple Fracture Interactions

Faisal Mukhtar, Carlos Duarte

A PDE-Based Jump Estimation for Phase Field Regularized Cracks

Tianshen Hu, Wen Jiang, Andre Costa, John Dolbow

Numerical modeling of fracture propagation in layered materials using an adaptively refined phase-field method

Salman Khan, Ishank Singh, Alba Muixi, Chandrasekhar Annavarapu, Antonio Rodríguez-Ferran

An adaptive phase-field approach to model failure in orthotropic materials

Ishank Jain, Alba Alba Muixi, Chandrasekhar Annavarapu, Shantanu Mulay, Antonio Rodríguez-Ferran

A Multi-Resolution Approach to Hydraulic Fracture Simulation

Andre Costa, Matteo Cusini, Tao Jin, Randolph Settgast, John Dolbow

A Machine Learning Assisted Multiphysics Model for Reliability Analysis of Underground Pipelines under Environmental Attack

Edel R. Martinez, Solomon Tesfamariam

Phase-field modelling of fracture behavior of heterogeneous random porous materials

Yutai Su, Jiaqi Zhu, Xu Long, Chuantong Chen, Katsuaki Sugarunuma

3D X-FEM Modeling of Crack Coalescence Phenomena in the Smart-Cut Process

ESSO-PASSI PALL, Anthony Gravoul, Anne Tanguy, Didier Landru, Oleg Kononchuk

A peridynamic fatigue model based on two-parameter remaining-life formulation

Dongjun Bang, Ayhan Ince

Quasistatic Fracture using Nonliner-Nonlocal Elastostatics with an Analytic Tangent Stiffness Matrix for arbitrary Poisson ratios

Patrick Diehl

A unified nonlocal model for capturing discontinuous, multiphysical and multiscale behaviours of geomaterials

Haitao Yu, Xuhuo Chen, Yuqi Sun, Xiaokun Hu

Fracture analysis of bimaterial interface with the residual thermal deformation by peridynamic model

Heng Zhang, Xiong Zhang

Study on thermal fatigue of nickel-based superalloy composites using Peridynamics method

Xingnan Hao, Xia Liu, Qingsheng Yang

Data-Driven Mechanics for Non-Local Solid Mechanics with Frankensteins’s Method

Bram Lagerweij, Gilles Lubineau

Employing a Bezier curve model for simulating microstructure generation during the additive manufacturing process to inform microstructure aware material models

Jeremy Trageser, John Mitchell, Theron Rodgers

Dynamic Fracture in Glassy Polymers: Peridynamic Models

Floren Bobaru, Longshen Wang

Fracture of A neo-Hookean Sheet: An Arc-Length Method-Based Phase Field Model and Crack Tip Fields

Yin Liu, Brian Moran
MS0109 Recent Advances in Modeling and Simulating Extreme Events

592 An Improved Efficient Molecular Simulation Method for Graphene
Shuai Wang, LeiYang Zhao, Yan Liu

651 Time-discontinuous Peridynamic Method for Transient Crack Propagation Problems
Yonggang Zheng, Zhenhai Liu, Hongfei Ye, Dong Qian, Hongwu Zhang

826 Material Point Method for Growth-induced Massive Deformation Analysis of Soft Materials
Zijian Zhang, Yunxiang Pan, Jianhua Wang, Hongwu Zhang, Zhen Chen, Hongfei Ye, Yonggang Zheng

898 An Immersed MMALE Material Point Method for FSI Problems
Zixian Sun, Zixian Sun, Xiong Zhang

928 An Explicit Phase-Field Material Point Method for Dynamic Brittle Fracture Problem
Zhixin Zeng, Xiong Zhang

1311 Numerical Simulation of Projectile Penetrating Based on Improved SPH Method
Jiaoyi Wang, Fei Xu, Zhen Dai, Lu Wang

1672 Numerical simulation of splashing water trajectory under engine influence
Liuwei Xiao, Fei Xu

1826 The Abnormal Change of Fluid-Solid System Induced by the Confinement with Extreme Small Size
Hongfei Ye, Jian Wang, Yonggang Zheng, Zhen Chen, Hongwu Zhang

2273 Modeling and Simulating Method for Dynamic Crack Propagation in Residual Stress Field
Sayako Hirobe, Kenji Imakita, Haruo Aizawa, Yasumasa Kato, Shingo Urata, Kenji Oguni

MS0110 CURRENT TRENDS IN PHASE-FIELD MODELING AND COMPUTATION OF FRACTURE & FATIGUE

494 Variationally consistent crack phase-field formulation for ductile fracture
Jake Han, Seishiro Matsubara, Shuji Moriguchi, Kenjiro Terada

569 An Efficient Phase Field Model for Fatigue Fracture
Si Kang Yan, Ralf Müller

762 Predicting Fracture in Human Bones using Phase Field Models and the Finite Cell Method
Lisa Hug, Gal Dahan, Stefan Kollmannsberger, Zohar Yosibash, Ernst Rann

788 Fully coupled damage evolution of moisture effects in polymer matrixed composites
Lu-Wen Zhang

1599 Adaptive Phase Field Modeling of Brittle Fracture Using the Scaled Boundary Finite Element Method in 3D
Rama Assaf, Carolin Birr, Hauke Gravenkamp, Sundararajan Natarajan
Phase-field Modeling of Fracture in Materials with Anisotropic Fracture Energy
Smita Nagpara, Ulrich Römer, Hermann G. Matthies, Laura De Lorenzi

Microstructure sensitive fatigue crack growth in anisotropic polycrystals
Hirshkesh Hirshkesh, Nishant Prajapati, Daniel Schneider, Britta Nestler

A variational phase-field model of fracture with frictional sliding
Keita Yoshieka, Mostafa Mollaali, Francesco Freddi

Micromorphic phase-field fracture model: Performance assessment and benchmarking
Ritukesh Bharali, Fredrik Larsson, Ralf Janicke

Parallel finite element solvers for phase-field modeling of fracture
Mohd Afeef Badri, Giuseppe Rastelli

Influence of material properties and fracture properties on crack nucleation and growth in thin films
Bo Zeng, John Dolbow, Johann Guilleminot

MS012 DUCTILITY ENHANCEMENT: ADVANCES IN EXPERIMENTAL AND COMPUTATIONAL MECHANICS

Modeling Ductile Response of Anchored Connections Using an Extended Gurson Model
Mostafa Mobasher, Peter Taylor, Pawel Woelke, Norman Fleck, John Hutchinson, Allan Zhong

Crystal Plasticity Modeling of Deformation Behavior of a ZX10 Magnesium Alloy Sheet under Various Strain Paths
Takayuki Hama, Koichi Higuchi, Sohei Uchida, Yuri Jono

Calibration of Material Model for Sheet Metals Using Digital Image Correlation and Bayesian Data Assimilation
Michihiko Suda, Ryunosuke Kamiyo, Akimitsu Ishii, Akinori Yamanaka

Material Model Calibration using 3D-DIC Measurement and Bayesian Data Assimilation
Sae Sueki, Akimitsu Ishii, Eisuke Miyoshi, Akinori Yamanaka

MS013 Damage and Failure of Composite Materials and Structures

Inspection Interval Optimization of Aircraft Composite Structure using Finite Element Analysis
Salman Khalid, Hee-Seong Kim, Yeong Rim Noh, Heung Soo Kim, Joo-Ho Choi

A Multi-Scale Probabilistic Model for Progressive Failure Assessment on Woven Composite Laminates
Aoshuang Wan

Numerical Investigation into the Failure Mechanisms of Z-pinned Curved Composite Laminates under Four-point Bending
Mudan Chen, Bing Zhang, António Meiro, Luis Varandas, Giuliano Allegri, Stephen Hallett

Mesh independent modelling of tensile failure in composite laminates using mixed-time integration in explicit analysis
Jagan Selvaraj, Luiz F. Kawashita, Stephen R. Hallett

Failure analysis of composite materials via micromechanics modelling and deep neural networks
Lei Wang, Zahrul Ullah, Brian Falzon

Implementation of R-curves for trans-laminar fracture of carbon/epoxy laminates using Abaqus Virtual Crack Closure Technique
Xiaoyang Sun, Xiaodong Xu, Takayuki Shimizu, Michael Wisnom

Versatile Fatigue Life Evaluation of CFRP Laminates Based on Interfacial Normal Stress
Naeji Monta, Masashi Abe, Yuka Sahara, Masahiro Hojo, Nobuhiro Yoshikawa

Probability Distributions of Mechanical Properties for 2D/C/SiC Composites under Uniaxial Tensile
Qiang Li, Gang Li

MS014 Computational Modelling of Self-healing Composite Materials and Structures

Finite Element Analysis of Repeated Damage and Healing Behavior in alumina/SiC Composite Ceramics
Taiyo Maeda, Toshiro Osada, Shingo Ozaki

Low-Velocity Impact Damage and Intrinsic Healing in Fibre Reinforced Polymer Composites
Ivica Smojver, Dominik Brezetić, Darko Ivančević

Toughening and Healing of CFRPs by Diels-alder Based Nano-modified Resin through Melt Electro-writing Process Technique. Experimental Campaign and Numerical simulation
Athanasiou Kotrosos, George Michailidis, Spyridon Psarras, Anna Geitona, Gregory Petropoulos, Filippos Tourlomousis, Vassilis Kostopoulos

Fatigue Behaviour of Open-hole Carbon Fibre/epoxy Composites Containing Electrospun Nano-modified Diels-alder Based Resin Interleaves as Self-healing Agent. Experimental Campaign and Numerical simulation
Spyridon Psarras, Athanasiou Kotrosos, Marianna-Georgia Chantzi, Anna Geitona, Gregory Petropoulos, Vassilis Kostopoulos

MS015 Plastic instability and fracture in ductile materials

Lateral Resistance of Buried Pipes by Frictional Limit Analysis
Fabio Figueiredo, Lavinia Borges, Luiz Felipe Moreira

Modeling Dynamic Ductile Fracture and Thermal Softening With a Variational Phase-Field Framework
David Jones, Tianchen Hu, Brandon Talamini, Andrew Stershic, John Dolbow

Numerical Simulation of Neck Propagation in Double Network Hydrogel
Isamu Riku, Koji Mimura

MS016 Multi-stage Failure Simulations

Ductile Fracture Initiation and Propagation Using Gurson-Cohesive Model (GCM) in 3D
Jihyuk Park
Multiscale Modelling of Fiber Reinforced Composite Beams

Development of a Novel Element for Simulating CFRP Strength Deterioration due to Cyclic Loadings Based on Entropy Damage

Jun Koyanagi, Aya Mochizuki, Ryo Higuchi, Vincent Tan, T.E. Tay

Fatigue Strength Simulation of Discontinuous Fiber CFRP Considering Viscoelastic-Viscoplastic Entropic Damage

Keitaro Todd, Yuta Umehira, Jun Koyanagi

Dynamics of an Aircraft with Corrugated Morphing Control Surfaces

Kensuke Soneda, Natsuki Tsushima, Tomohiro Yokozeki

Numerical Simulation of Temperature Elevation during Ultrasonic Welding Process of CFRP

Maruni Takamata, Katsuro Uehara, Shinichi Takeda, Jun Koyanagi

Exploring Direct FE2 in Modelling Heterogeneous Problems beyond Scale Separation

Jie Zhi, Karihikiyen Raju, Leong Hien Poh, Tong-Earn Tay, Vincent Tan

Damage Simulation for Textile Composites Using Fiber-bundles / Matrix-resin Separated Mesh

Akinori Yoshimura, Takanori Sugihara, Keita Goto, Masahiro Arai

The Mechanical Response and Failure Mechanisms of Natural Fiber Reinforced Composite Laminates: A Computational Study Validated by Experiments

Olga Simons, Nira Trabelsi, Elad Priel

Moving Particle Simulation for Compression Molding of Polymer Matrix Composite Rib Considering Fiber Deformation

Sota Onodera, Katsuki Haraguchi, Shigeki Yoshiro, Tomonaga Okabe

Modelling of angle-ply Fiber-Reinforced Composite laminates with Direct FE2

Karihikiyen Raju, Jie Zhi, Vincent B.C. Tan, Tong-Earn Tay

Structural Evaluation in Lattice-Based Mechanical Metamaterials Fabricated by AM for Lightweight Tunable Structures

Natsuki Tsushima, Ryo Higuchi, Koji Yamamoto, Tomohiro Yokozeki

Finite Element Analysis for Failure Prediction of CFRP Cross-Ply Laminates Considering Viscoelastic Model with Entropy Damage

Mie Sato, Aya Mochizuki, Ryo Higuchi, Jun Koyanagi, Yuichi Ishida

A New Method to Identify Delamination Shape Using Topology Optimization and Visualization of Ultrasonic Waves

Kazuki Ryuzono, Shigeki Yoshiro, Sota Onodera, Nobuyuki Toyama

Self-deployment characteristics of CFRP bistable open sectional semi-cylindrical beam

Sho Kajihara, Tomohiro Yokozeki, Takahira Aoki

Temperature Response of CFRP Exposed to Simulated Lightning Current

Shintaro Kamiyama, Yoshiyasu Hirano, Takao Okada, Takeo Sonehara, Toshio Ogawara

Multiscale-Multiphysics Simulation of Process-Dependent Mechanical Properties of Thermoplastic Composites

Ryo Higuchi, Masaya Katou, Yutaka Oya, Sota Oshima, Tomohiro Yokozeki, Takahira Aoki

Multiscale analysis for prediction of process-induced warpage on asymmetric CFRP laminate

Yoshiaki Kawagoe, Kenji Kawai, Yuta Kumagai, Keiichi Shirasu, Gota Kikugawa, Tomonaga Okabe
Three-dimensional Stress Fields in Tapered Laminated Composites with Internal Ply Drops
Sander van den Boer, Mayank Patni, Aevis Hil, Peter Greaves, Paul Weaver, Alberto Pirrera

Identification of disbond and delamination in a honeycomb sandwich structure using air-coupled guided wave ultrasonics
Jing XIAO, Zhen Zhang, Zheng Zheng WONG, Andrew Alexander Malcolm, Fangsen CUI

Damage Propagation Analyses of CFRP laminate with impact damage under compressive load using Zig-zag CZM
Chenyu Wang, Toshiro Nagashima

Computational and analytical homogenization of creep in fiber reinforced metals
Alexander Dyck, Daniel Wicht, Matti Schneider, Thomas Böhlke

Multiscale failure analysis of flame-retardant CFRP laminates
Keiichi Shira, Junpei Tsuyumi, Tomonaga Okabe

Stochastic Stress Analysis of Unidirectional FRP Considering Random Fiber Location Variation in case of Higher VF by Improved Mesh Superposition Method
Kazuki Kaneshue, Sei-ichiro Sakata

Improved Numerical Simulation of Woven Textile Membranes using Stress-Ratio-Dependent Material Properties
Mehran Motamvai, Daniel Balzani

Strength estimation of composite material by peridynamics and in-situ observation
Yuki Arai

Nonlinear Buckling, Post-buckling and Collapse of Composite Thin-walled Lenticular Tubes Subjected to Pure Bending
Ning An, Qilong Jia, Xiaofei Ma, Jinxiang Zhou

Direct FE– Concurrent multiscale and multiphysics modelling of composites with ABAQUS
Jie Zhi, Karthikayen Raju, Leong Hien Poh, Tong-Earn Tay, Vincent Tan

Steady-State Creep Analysis of Composite Spherical Vessels Using the Finite-Strain Theory
Vinod Arya

Predicting Ductile Fracture during Sheet Stretching by a Modified Miyachi Test Using an Ellipsoidal Void Model
Kazutake Komori

An Anisotropic Damage Model for Prediction of Ductile Fracture during Cold Forging
Atsuo Watanabe, Kunio Hayakawa, Shinchiro Fujikawa

Investigating the Influence of Material Ductility on the Failure Prediction Capabilities of the Continuum Damage Mechanics Approach: A Computational Study Validated by Experiments
Nitzan Rom, Jacob Bortman, Elad Priel

Numerical Simulation of Ductile Fracture Based on A Novel Damage Evolution Model
Tianbao Ma, Yi Shen, Jianqiao Li

MS0120 Peridynamics and Nonlocal Theories for Fracture Modelling: Recent Developments and Their Applications

Perodynamic Simulations of Gas-pore Effects on Fatigue Lifetime
Binchao Liu, Bocai Chen, Weipeng Zeng, Rui Bao

Crack Propagation Analysis in Embankments during Earthquakes using Ordinary State-based Peridynamics
Taiki Shinmo, Tomoki Kawamura, Ukkyo Uchi, Yutaka Fukimoto

Smoothed variable horizon Peridynamic modelling and its applications
Michiya Imachi, Satoyuki Tanaka

Simulation of Brittle/Quasi-brittle Fracture with the Smoothing Gradient Damage Model
Chanh Dinh Vuong, Trinh Quoc Bui, Sohichi Hirose

Component-wise fracture analysis through coupled three-dimensional peridynamics and refined one-dimensional finite elements
Marco Enea, Alfonso Pagani, Erasmo Carrera

Accurate absorbing boundary conditions for two-dimensional peridynamics
Gang Pang, Songsong Ji, Xavier Antoine

Dual Horizon Peridynamic Implementation in a Finite Element Framework - ANSYS
Erdogan Madenci, Sundaram Vinod Anicode

Peridynamic Analysis of Porous Media with Micro-cracks
Erkan Oterkus, Murat Ozdemir, Selda Oterkus, Islam Amin, Satoyuki Tanaka, Abdel-Hameed El-Aassar, Hosam Shawky

Improvements of Fracture Analysis on Shear Behaviours by Using Modified Ordinary State Based Peridynamics
Hunlin Wang, Satoyuki Tanaka, Selda Oterkus, Erkan Oterkus

Dual-horizon peridynamic element and its coupling with finite element
Yehui Bie, Yueguang Wei

MS0121 Recent Advances in Computational Fracture Mechanics for Subsurface Applications

Utopia: an open-source software for large scale simulations of pressure-induced phase-field fracture propagation
Patrick Zulian, Alena Kopanicakova, Maria Nestola, Nur Fadel, Andreas Fink, Daniel Ganellari, Joost VandeVondele, Rolf Krause

A variational phase-field model for subcritical fracture
Juan Michael Sargado, Michael Welch, Mikael Luthje

Modelling the evolution of large fracture networks
Michael Welch, Mikael Luthje

Shuai Zhu, Hongjun Yu, Lielie Hao, Zhen Shen, Licheng Guo

Phase Field Modelling of Coupling Evolution of Fracture, Dielectric Breakdown and Polarization in Ferroelectric Materials
Yong Zhang, Je Wang
Mixed finite-element formulations for flexoelectricity in piezoelectric solids with analysis of fracture behaviour
Sergey Kozinov, Prince Henry Serrao

MS0123 Computational Fracture Modeling in Heterogeneous Materials – Recent Advances and Future Challenges

Unified definition of stress intensity factors of a sharp three-dimensional jointed corner among dissimilar anisotropic materials
Toru Ikeda, Onar Ibrahim, Masaki Koganemaru

Surrogate-based stochastic optimization for enhancing interfacial fracture resistance of heterogeneous structures
Sukhminder Singh, Lukas Pflug, Michael Stingl

Modelling Rock Fracture using the Stochastic Bonded Discrete Element Method
Albin Wessling, Simon Larsson, Pär Jonsén, Jörgen Kajberg

Unified definition of stress intensity factors of a sharp three-dimensional jointed corner among dissimilar anisotropic materials
Toru Ikeda, Onar Ibrahim, Masaki Koganemaru

Surrogate-based stochastic optimization for enhancing interfacial fracture resistance of heterogeneous structures
Sukhminder Singh, Lukas Pflug, Michael Stingl

Modelling Rock Fracture using the Stochastic Bonded Discrete Element Method
Albin Wessling, Simon Larsson, Pär Jonsén, Jörgen Kajberg

Configurational Mechanics for Modelling Fracture Propagation in Heterogeneous and Anisotropic Materials
*Keynote Lecture
Chris Pearce, Karol Lewandowski, Ignatios Athanasiadis, Łukasz Kaczmarczyk

MS0124 Modeling of concrete in an Experimental-Virtual-Lab

A 3D Model Combining Cohesive Zone Approach and Friction to Model the Steel-Concrete Interface
Mohammad Abbas, Benoît Bary, Ludovic Jason

3D Meso-Scale Numerical Experiment of Reinforced Concrete Reflecting the Geometry of Deformed Bars and Coarse Aggregates
Keisuke Nasukawa, Hiroto Masui, Mao Kurumatani

A variational formulation for thermally-induced cracking in concrete
Akari Nakamura, Yoshuke Yamanaka, Shuji Moriguchi, Kenjiro Terada

Phase-field Modeling for Damage in Reinforced High Performance Concrete at Low Cycle Fatigue: Numerical Calibration and Experimental Validation
Mangesh Pise, Dominik Brands, Jörg Schröder, Gregor Gebuhr, Steffen Anders

Study on Damage Characteristics of Ceramsite Concrete Based on Multi-phase Mesoscopic Model
Xiaoping Yan, Rixing Huang, Xiaoxiao Sun, Nana Zhang, Xiaoming Guo Guo
Spatially Variable Coal Slope Stability Analysis using Image-Based Scaled Boundary Finite Element Method
Dakshith Wjesinghe, Ashley Dyson, Greg You, Manoj Khandelwal, Ean Ooi

3D dynamic fracture analysis using high-order elements of SBFEM
Hong Zhong, Xinxin Jiang, Deyu Li, Lijun Zhao

Pointwise conservative SBFEM approximations based on mixed finite elements "Keynote Lecture
Karolinne Coelho, Philippe Devloo

SBFEM for hydrodynamic problems with cavitation
Simon Pfeil, Hauke Gravenkamp, Fabian Duvinageau, Elmar Woschke

Three-dimensional Non-linear Numerical Analysis of Randomly Distributed Short Fiber-Reinforced Composites using the Scaled Boundary Finite Element Method
Shukai Ya, Sascha Eisenträger, Chongmin Song

Time integration methods for wave propagation modeling in unbounded domains using the scaled boundary finite element method
Tobias Kuhn, Carolin Birk, Hauke Gravenkamp

Crack-like Defect Inversion Model Based on SBFEM and Deep Learning
Shouyan Jiang, Chen Wan, Liguo Sun, Chengbin Du

Nonlocal Macro-micro Damage Model For Cracking Simulation Based On SBFEM "Keynote Lecture
Chengbin Du, Wencang Huang

Simulation study on meso-level concrete cracking based on SBFEM method considering the influence of cohesion
Liguo Sun, Chengbin Du

A Massively Parallel Solver for Explicit Damage Analysis Exploiting Octree Mesh Patterns
Ankit Ankit, Junqi Zhang, Chongmin Song, Sascha Eisenträger

A NURBS enhanced polygonal element formulation for the nonlinear analysis of solids in boundary representation "Keynote Lecture
Sven Klinkel, Rainer Reichel

Dynamic crack face contact based on the scaled boundary finite element method
Peng Zhang

High-frequency scattering analyses at dramatically low computational cost using phase-reduced isogeometric on surface radiation conditions
Tahsin Khajah

A Scaled Boundary Finite Element Framework for Mesh Burden Alleviation and High-Performance Computing
Chongmin Song

A temporally piecewise adaptive extended multiscale scaled boundary finite element method for viscoelastic problems
Xiaoteng Wang, Haitian Yang, Yiqian He

Modelling Creep in Short-Fibre Reinforced Composites Based on the Scaled Boundary Finite Element Method
Johanna Eisenbraeuer, Junqi Zhang, Sascha Eisenbraeuer, Chongmin Song

Quadrilateral Scaled Boundary Spectral Shell Elements with Assumed Natural Strains
Jianghua Li, Zihua Zhang, Lei Liu

Finite Element Method with Optimal Functions (FEM-OF)
Ernesto Rubio-Acosta, Alicia De-la-Mora-Cebada, Ismael Herrera-Revilla

Differentiation of a scaled boundary finite element model in the context of material parameter determination
Dominik Imer, Hauke Gravenkamp, Dmitrij Dreiling, Bernd Henning, Carolin Birk

Resolving quasi-brittle fractures in anisotropic domains with SBFEM
Anargyros Moysidis, Savvas Triantafyllou

First-Order Virtual Elements for the Shear Deformable Plate Problem
Gregorio Bertani, Antonio Maria D’Alfri, Luca Patruno, Stefano de Miranda, Elio Sacco

Adaptive Virtual Element Method
Marco Verani, Lorenzo Beirao da Veiga, Claudio Canuto, Ricardo H. Nochetto, Giuseppe Vacca

Virtual Element Method for Large Deformations of Plates with Isometry Constraints
Shuo Yang, Giuseppe Vacca, Ricardo Nochetto

Virtual Element Method (VEM)-based 2D Cohesive Fracture Simulation with Element Split and Stress Recovery
Hebeun Choi, Heng Chi, Kyoungsoo Park

Adaptive Mesh Refinement Procedures for the Virtual Element Method
Daniel van Huyssteen, Felipe Lopez Rivasola, Guillermo Etse, Paul Steinmann

A Virtual Element Method to resolve ductile fractures in particulate composites with arbitrary shaped inclusions
Savvas Triantafyllou, Abhilash Sreekumar

Investigation on Grid Resolution Requirements for High-order Implicit Large Eddy Simulation
Juhyun Kim, Hojun You, Chongam Kim

Boundary Variation Diminishing scheme using β-variable THINC scheme for compressible multiphase flow
Hiro Wakimura, Yoshiaki Abe, Takanori Haga, Feng Xiao

Hybridized Flux Reconstruction Methods for Convection-Diffusion Problems
Carlos Peréz, Brian Vermeire

GPU Accelerated Paired Explicit Runge-Kutta Schemes in HORUS "Keynote Lecture
Brian Vermeire
1361 Utilizing Time-Reversibility for Shock Capturing in Nonlinear Hyperbolic Conservation Laws
Tanq Doan, Will Trojak, Freddie Witherden

1341 On the Use of Entropy Stable Flux Reconstruction for Large Eddy Simulation
Julien Brillon, Alexander Cicchino, Siva Nadarajah

1344 Third-Order Paired Explicit Runge-Kutta schemes for Stiff Systems of Equations
Sivash Hedayati Nasab, Brian C Vermeere

1384 Efficient approaches to CFD simulations of reactive flow using reliable chemical reaction models
Youshi Mori, Kaoru Maruta

2145 Large-Eddy Simulations of Supercritical Jet Flames by Flux-Reconstruction Method with Invariant-Region-Preserving Limiter *Keynote Lecture
Takanori Haga, Yuma Fukushima, Kyoshi Kumahata, Taro Shimizu

3163 PyFR: Latest Developments and Future Roadmap
Peter Vincent, Freddie Witherden

3215 Optimization of Non-Continuous Airfoils for Martian Rotorcraft using Direct Numerical Simulations
Lidia Caros, Oliver Buxton, Peter Vincent

MS0204 Recent advances in immersed boundary and fictitious domain methods

410 Unfitted Finite Element Method for Fully Coupled Poroelasticity with Stabilization
Zhijun Liu, Yimin Zhang, Yao Jiang, Han Yang, Yongtao Yang

701 Links between ghost penalty stabilisation and aggregation-based finite element techniques *Keynote Lecture
Santiago Badia, Eric Neiva, Francesc Verdugo

725 Penalized Direct-Forcing method and power-law-based wall model for Immersed-Boundary numerical simulations of obstacles in turbulent flow
Idris Hamadache, Michel Belliard, Pierre Sagaut

852 Improving the robustness of the Finite Cell method for finite strain problems
Wadhah Garhuom, Alexander Düster

984 Enrichment of Finite cells for Image-based analysis of Materials with complex Microstructures
Mahan Gorji, Alexander Düster

1038 On numerical integration of cut finite elements and cells
Alexander Düster, Wadhah Garhuom

1042 Numerical Characterization and Evaluation of Additive Manufactured Parts in Geometrical Multiscale Computational Models
Oğuz Ortaçrak

1116 Mathematical Aspects of the Shifted Boundary Method *Keynote Lecture
Claudio Canuto, Nabil M. Atallah, Guglielmo Scovazzi

1239 A High-Order Extended Discontinuous Galerkin Method for Coupled Multi-Material Sharp Interface Problems
David Henneaux, Pierre Schroyen, Philippe Chatelain, Thierry Magin

1368 Simulation of Density-driven Subsurface Flow with a Phreatic Surface: Comparison of Approaches
Niklas Corren, Dmitry Logashenko, Arne Nagel, Gabriel Wittum

1407 Finite Cell Method using Boolean Operations for Multi-Material Problems
Márton Péto, Fabian Duvigneau, Sascha Eisenträger, Daniel Juhe

1443 phi-FEM: a fictitious domain approach achieving optimal convergence without non standard numerical integration
Alexei Lozynsky, Michel Duprez, Vanessa Lleras

1485 Efficient domain integration of discontinuous material using moment fitting method enhanced by neural network
Hayoung Chung, Tae Hun Kang, Semin Lee

1662 A higher-order fictitious domain method for structural membranes and shells
Thomas-Peter Fries

2363 Voxel-based Simulations of Ductile Crack Propagation through Metal Matrix Composite Microstructures based on Eigenerosion and Finite Cells
Dennis Wingender, Daniel Balzani

2414 A Poisson problem with internal Dirichlet condition motivated by geophysical applications
Mariano Tomás Hernández, Pedro Diez, Sergio Zlotnik

2628 Isogeometric V-reps: Efficient and Robust Integration
Pablo Antolín, Xiaodong Wei, Annalisa Buffa

2903 A Posteriori Error Control and Adaptivity for the Finite Cell Method *Keynote Lecture
Paolo Di Stolfo, Andreas Schröder

3108 Efficient Patient Specific Model Adaptation for in silico Bone Remodelling Prediction
Jorge Gutiérrez-Gil, Enrique Nadal, Carlos M. Atienza Vicente, Manuel Tur, Juan José Ródenas

3125 Extended Spectral Cell Method For Explicit Dynamic Analysis in Structural Health Monitoring Applications
Sergio Nicolì, Konstantinos Agathos, Pawel Kudela, Eleni Chatzi

3425 Open-source NURBS Handling Toolbox in MATLAB

MS0205 Particle-based methods: advances and applications in DEM, PFEM, SPH, MPM, MPS and others

611 Multiscale, multiphysics modeling of wave propagation in anisotropic saturated porous media
Weijian Liang, Jidong Zhao

722 Force method conception using transfer matrix to apply to multiphase flow by one-by-one corresponding Particle-Cartesian cell (P/CC) model
Junya Imamura

925 Passive self-propulsion based on asymmetric collision dynamics
Timofei Kruglov, Alexander Borisov

968 The P-DNS Method to Solve Particle-Laden Turbulent Fluid Flows
Sergio Idelsohn, Juan Gimenez, Eugenio Onate
1200 Modeling of Solid Phase Processing of Aluminum Alloys using Smoothed Particle Hydrodynamics and Physics-Based Constitutive Material Model
Ayoub Soulami, Lei Li, Glenn Grant

1351 A Lagrangian Meshfree Solution Scheme for Additive Manufacturing of Metals at Powder Scale
Bo Li, Zongyue Fan, Huming Liao

1673 The droplet-phase model is a novel method that models the development and evolution of thin-films in the form of droplets. It consists of moving droplets on a 2-D manifold and allows the use of computational resources more efficiently in comparison to fully 3-D Navier-Stokes solvers to capture the same behaviour.
Anand Bharadwaj, Pratik Suchde, Joerg Kuhnert

1992 Particle-based Numerical Analysis of Jet Flow from a Pipe
Norimasa Yamasaki, Haruka Obe

2352 Towards a Quaiscontinuum Method for Granular Systems
David De Kee, Tom Shire, Zhiwei Gao, Andrew McBride, Paul Steinmann, Chris Pearce

2540 Modelling of forming processes using the Particle Finite Element Method (PFEM)
Josep Maria Carbonell, Hadi Bakhshan, Juan Manuel Rodriguez, Eugenio Oñate

3216 A novel implicit material point method for ductile fractures
Emmanouil Kakouris, Savvas Triantafyllou

477 Isogeometric Analysis for Automotive Body Structure using Splines with Extraordinary Points
Kenji Takada

527 An Isogeometric Analysis Based Topology Optimization Framework for Additive Manufacturing of 2D Cross-Flow Heat Exchangers
Xuan Liang, Angran Li, Anthony Rollett, Jessica Zhang

787 Isogeometric Reconstruction and Crash Analysis of a 1996 Body-in-White Dodge Neon
Kendrick Shepherd, Xiafeng David Gu, Thomas J.R. Hughes

871 Isogeometric analysis in LS-DYNA: advances in industrial deployment
Attila Nagy, Leping Li, Lam Nguyen, Marco Pigazzini, David Benson, Stefan Hartmann, Lukas Leidinger

2460 Isogeometric shell analysis for aerospace engineering applications
Emily Johnson

3179 An Open-Source Immersogeometric Analysis Framework for Heart Valve Modeling and Simulation
Grant Neighbor, Han Zhao, Mehdi Saraeian, David Kamensky, Ming-Chen Hsu

360 Property-Preserving Discontinuous Galerkin Methods for Hyperbolic Problems
Hennes Hajduk

447 An Interpolating Particle Method for the Vlasov-Poisson equation
Rostislav Paul Wilhelm

806 Interpolating Vortex Particle Methods using Splines Wavelets
Matthias Kirchnert

967 Recent Advances in Pressure-robust Finite Element methods
Christian Merdon

1138 A robust and accurate SPH formulation for compressible multi-phase flows
Zhen Li, Lin Fu, Jiaju Liu

1297 Molecular Dynamics Simulation on Dynamic Behaviors of Nanodroplets Impinging on Wrinkle Surfaces of Graphene
Ruqi Han, Fei Xu

1695 SPH Modeling of Cavitation Impact on Soft Tissue Material
Jingyu Wang, Steffen Schmidt, Nikolaus Adams

1263 Time-dependent modelling of quasi-brittle materials with a strong discontinuity approach
Saeed Mohammazadeh Chianah, Daniel Dias-da-Costa

1455 XFEM based electrostatic analysis for edge effect of parallel plates
Shogo Nakasumi, Yoshihisa Harada

1905 A Scale-Bridging Generalized Finite Element Methods for Structural Dynamics and Wave Propagation
Alfredo Sanchez-Rivadeniera, Carlos Duarte

2413 Space-Time Enriched Finite Element Methods for Wave Propagation
Kieran Quaine, Heiko Gimperlein

2555 A Discontinuity-enriched Finite Element Method for Dynamic Brittle Fracture
Yuheng Yao, Alejandro Aragón

2932 A conjugate gradient solver based on adapted deflation for the efficient solution of large scale, 3D crack propagation problems using eXtended/generalised finite elements
Konstantinos Agathos, Tim Dodwell, Eleni Chatzi, Stephane Bordas

3103 Model-based Simulations of Laser Lithotripsy Using a CutFEM Method
Yangyuanchen Liu, Susanne Claus, Pierre Kerfriden, Pei Zhong, John Dolbow

379 Surface tension and negative pressure calculation using moving particle hydrodynamics method
Masahiro Kondo, Hideyo Negishi, Junichi Matsumoto
A IETI Method for Trivariate Geometries with nonconforming Patches based on Mortaring
Sumita Dahiya, Gershon Elber, Q Youn Hong, Mario Mally, Melina Merkel, Sebastian Schops, Olaf Steinbach

Electromagnetic wave propagation through structure-preserving spline differential forms
Rafael Vazquez, Bernard Kapidani

Leveraging code generation in numerical methods for complex geometries
*Keynote Lecture
David Kamenycz, Han Zhao, Grant Neibour, Jennifer E. Fromm, Ru Xiang, Nils Wunsch, John T. Hwang, Ming-Chen Hsu, John A. Evans, Kurt Maute

Design-related Simulation – A Discussion
Uwe Schramm

Explicit constants in isogeometric approximations
*Keynote Lecture
Espen Sande

Optimization, Adaptivity, and Surface Fitting of High-Order Meshes
Veselin Dobrev, Patrick Knupp, Tzanie Kolev, Ketan Mittal, Vladimir Tomov

Computation of Incompressible Flows on Adaptive Unit Curve linear Grids
Arthur Bawin, Ruili Zhang, André Garon, Jean-François Remacle
<table>
<thead>
<tr>
<th>MS0301 Mathematical and Mechanical Aspects of Mixed-Dimensional Coupling Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>632 Dragged Solids: Three-dimensional Solids with the Kinematics of Geometrically Exact Models</td>
</tr>
<tr>
<td>Ignacio Romero, Rafael Cantón-Sanchez, David Portillo</td>
</tr>
<tr>
<td>1187 How Well Do Constraint Mixture Models Represent Fibrous Soft Tissues? A Comparison Against Embedded, Discrete Fiber Models</td>
</tr>
<tr>
<td>Sokinos Kakaletras, Emília Lejeune, Manuel Rausch</td>
</tr>
<tr>
<td>1430 Linear and nonlinear 1D-3D models for fluid exchange between tubular networks embedded in porous media</td>
</tr>
<tr>
<td>Timo Koch, Martin Schneider, Rainer Helmig, Kent-André Mardal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0302 Quasistatic Electromechanics: Methods and Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>776 Simulating Nonlinear Domain Reorientation and Phase Transformation Phenomena in a Micromechanical Ferroelectric Model</td>
</tr>
<tr>
<td>Wen Dong</td>
</tr>
<tr>
<td>1045 Anisotropic Extension of a Model for Ferroelectric Materials with Ferroelectric to Antiferroelectric Phase Transformation</td>
</tr>
<tr>
<td>James Carleton, Thomas Hughes</td>
</tr>
<tr>
<td>1387 Microstructure-Explicit Simulation of Electromechanically-Driven Dielectric Breakdown of P(VDF-TrFE)/nAl Films under Impact Loads</td>
</tr>
<tr>
<td>Ju Hwan Shin, Derek Messer, Metin Örnek, Steven Son, Min Zhou</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0303 Computational interface mechanics in coupled problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180 Development of Partitioned Symmetric Formulation for Thermoelastic Interaction Problems</td>
</tr>
<tr>
<td>Chang-uk Ahn</td>
</tr>
<tr>
<td>1434 Coupled simulation of vibration and sound radiation of violin in large space</td>
</tr>
<tr>
<td>Masao Yokoyama, Amane Takei, Ryo Yoshidome, Genki Yagawa</td>
</tr>
<tr>
<td>2005 Simulation of interface-coupled porous-medium applications using partitioned methods</td>
</tr>
<tr>
<td>Alexander Jaust, Miriam Schulte</td>
</tr>
</tbody>
</table>

| **2412** A new paradigm to follow sharp physical interface - the eXtreme mesh deformation approach (X-MESH) - application to phase-change |
| Nicolas Moe, Jean-François Remacle, Jonathan Lambechts, Benoit LE |
| **2814** Partitioned formulations for the simulation of dynamic Fluid-Structure Interaction problems using localized Lagrange multipliers *Keynote Lecture* |
| José A. González, K.C. Park |

<table>
<thead>
<tr>
<th>MS0304 Multi-scale and machine learning-based modeling methods for optimization and design of composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>810 Local Refinement of Structural Kinematics for Failure Onset Analysis via Neural Networks</td>
</tr>
<tr>
<td>Marco Petrolo, Alfonso Pagani, Pierluigi Iannotti, Erasmo Carrera</td>
</tr>
<tr>
<td>1012 Optimisation of multi-layered structures using a multispecies genetic algorithm and high-order structural models</td>
</tr>
<tr>
<td>Alberto Racionero Sanchez-majano, Alfonso Pagani</td>
</tr>
<tr>
<td>1033 Stochastic microscale stresses prediction of variable angle tow plates considering multiscalar defects employing unified finite elements and mechanics of structure genome</td>
</tr>
<tr>
<td>Alberto Racionero Sanchez-Majano, Alfonso Pagani, Marco Petrolo, Erasmo Carrera</td>
</tr>
<tr>
<td>1806 A High-Efficient Multi-Scale Analytical Model of Three-Dimensional Woven Composites</td>
</tr>
<tr>
<td>Chao Zhang, Hao Yuan Dang, Li Yong Tong</td>
</tr>
<tr>
<td>2008 Multiscale analysis of composite laminates Keynote Lecture</td>
</tr>
<tr>
<td>Dinghe Li</td>
</tr>
<tr>
<td>2041 Transverse Crack Characterization of Fiber-Reinforced Composites: High-fidelity and Data-Driven based Methods Keynote Lecture</td>
</tr>
<tr>
<td>Maryam Shakiba, Reza Sepasdar</td>
</tr>
<tr>
<td>2768 Dynamic Analysis of Functionally Graded Graphene-reinforced Composite Sandwich Beams based on a Modified Zigzag Theory</td>
</tr>
<tr>
<td>Ma Rui, Zhang Chao</td>
</tr>
<tr>
<td>2824 Microscopic Stress Field Estimation of Unidirectional FRP having Random Fiber Arrangement under Transverse Tensile Loading by Image Analysis based Machine Learning</td>
</tr>
<tr>
<td>Manabe Jyosei, Arai Yuki, Sakata Sei-ichiro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS0305 Multiphysics mechanics & transport phenomena in soft materials & their interfaces: theory, simulations, & experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>979 Data-driven Control of Bioaerosol Concentration by Inlet Air at a Recirculation Area Involved Indoor Corner</td>
</tr>
<tr>
<td>Xingyu Zhang, Hua Li</td>
</tr>
<tr>
<td>1899 Deformation-diffusion coupled material model for paper including visco-elasticity and visco-plasticity Keynote Lecture</td>
</tr>
<tr>
<td>Manfred Ulz, Tristan Seidlofer, Ulrich Hirn</td>
</tr>
</tbody>
</table>
Integrated features design and double optimisation of enhanced architected structural material for improved energy absorption
Eric C.S. Ngin, Li Hua, Dong Zhi Li

Effect of High Mechanical Loading on Intervertebral Disc Calcification
Qiaoqiao Zhu, Xin Gao

MS0306 MULTISCALE COMPUTATIONAL HOMOGENIZATION FOR BRIDGING SCALES IN THE MECHANICS AND PHYSICS OF COMPLEX MATERIALS

Realistic Microscale Domains through Microstructure Reconstruction
Paul Seibert, Alexander Raßloff, Manreddy Ambati, Karl Kalina, Katrin Bugel-Sonne, Joachim Gussone, Markus Kästner

Hierarchical Multiphysics Modelling of Fibre-Reinforced Composites
Callum Hill, Jason Yon, Giuliano Allegri, Ian Hamerton, Richard Trask

Coarse-Grained Atomistics at Finite Temperature by a Gaussian Phase Packet-Based Quasicontinuum
*Keynote Lecture
Dennis Kochmann, Prateek Gupta, Shashank Saxena, Miguel Spinola

Advances in Practical Multiscaling *Keynote Lecture
Jacob Fish Fisch

Numerical Material Tests for Characterizing Macroscopic Viscoplasticity along with Static Recovery of Fiber-reinforced Thermoplastics
JUNLAN ZHU, Seishiro Matsubara, So Nagashima, Dai Okumura

A Crystal Plasticity Model for Porous HCP Crystals in Titanium Alloys under Multiaxial Loading Conditions
Qingcheng Yang, Somnath Ghosh

Kinetics of Ferroelectric Ceramics: A Large-Scale Phase-Field Study on Bulk Polycrystalline PZT
Roman Indergand, Vignesh Kannan, Dennis Kochmann

Estimation of Nonlinear Material Behavior for Off-axis UD-CFRP Using Numerical Material Tests
Masato Somemiyas, Norio Hirayama, Koji Yamamoto, Seishiro Matsubara, Kenjiro Terada

Equilibrium shapes of homogenized prestrained composite plates
Stefan Neukamm, Oliver Sander, Klaus Bohnlein, David Padilla-Garza

Computational Homogenisation of Shear-deformable Shell Models accounting for Mesoscopic Damage in Laminated Composites
Anevis K.W. Hui, Bassam El Said, Stephen R. Hallett

Numerical Material Testing for Compaction Process of Powdered Metals by means of FEM
Koji Yamamoto, Masato Somemiyas, Norio Hirayama, Seishiro Matsubara, Kenjiro Terada

Computational Homogenization of Locally-Resonant Poroleastic Medium
Renan Lipekevicius Carnelli, Hans van Dommelen, Marc Geers, Varvara Kouznetsova

Computational Homogenization of Martensite/Ferrite Interface Microstructures Towards Enhanced Cohesive Interfaces
Lee Liu, Francesco Maesra, Johan Hoefnagels, Marc Geers, Varvara Kouznetsova

Enhanced Non-Uniform Transformation Field Analysis
Akanksha Mishra, Pietro Carrara, Sonia Marfia, Elio Sacco, Laura De Lorenzis

Extended General Interfaces
Soheil Firooz, Paul Steinmann, Ali Javili

A Cohesive Traction Embedded Constitutive Law Combined with Tresca Yield Function and Shear-Induced Damage Variable for Ductile Failure
Reiya Tao, Yuichi Shintaku, Kenjiro Terada

Accelerated Multiscale Simulations of Heterogeneous Materials using Machine Learning with Knowledge Transfer
Leong Hien Poh, Zhongbo Yuan

Multi-scale Modelling of Emergent Dynamic Metamaterial Behaviour in Linear and Non-linear Regimes *Keynote Lecture
Varvara Kouznetsova, Marc Geers

A size dependent homogenized model for colonies of Ti-alloys having lath microstructure
Pritam Chakraborty, Mustafa Kazim

Nonlinear Multiscale Simulation of Beam Lattice Structures with Physics-Guided Artificial Neural Networks
Oliver Weeger

Atomistic-Continuum Multiscale Simulation of Polycarbonate Under Different Strain Rate Deformations
Atsuki Yoshimura

A Reduced Order Model Approach for Finite Element Analysis of Cellular Structures
Daniel White, Jun Kudo, Seth Watts, Daniel Tortorelli

On wet coefficient of restitution of particles: a DNS study
Mehdi Jangi

Elastocapillary and limited Plateau-Rayleigh instability of soft hydrogel fibers
Berkin Dortdivaniloglu

Metamaterials parameter determination by means of an asymptotic homogenization applied in the finite element method
Bilen Emek Abal

Design optimization of single-phase metamaterial for elastic wave bandgap: graph theory and genetic algorithm-based approach
Nitin Kumar, Anuj Joshi, Aniket Waghmare, Siladitya Pal
<table>
<thead>
<tr>
<th>Session Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS0310</td>
<td>Advances in phase-field modelling and simulation</td>
<td>Akash Kumar, Nishant Prajapati, Michael Späh, Daniel Schneider, Benjamin Busch, Christoph Hilgers, Britta Nestler</td>
</tr>
<tr>
<td>MS0311</td>
<td>Performance analysis and degradation studies of photovoltaic modules</td>
<td>Sdvvs Varma Siruvuri, Pattabhi Ramaiah Budarapu, Kodanda Ram Mangipudi</td>
</tr>
<tr>
<td>MS0312</td>
<td>Multiscale coupling methods for modelling and simulation of materials</td>
<td>Shuyang Dai</td>
</tr>
<tr>
<td>MS0313</td>
<td>Novel modeling strategies for mechatronic systems</td>
<td>Dominik Mayrhofer, Manfred Kaltenbacher</td>
</tr>
<tr>
<td>MS0314</td>
<td>3D modeling of building materials: geometric and constitutive issues</td>
<td>Astrid Pechstein, Alexander Humer, Michael Krommer</td>
</tr>
<tr>
<td>MS0315</td>
<td>Computation for energy storage</td>
<td>Wei Li, Donal Finegan, Trevor Martin, Juner Zhu</td>
</tr>
<tr>
<td>MS0316</td>
<td>Accelerate kinetic simulations</td>
<td>Samuel Olivier</td>
</tr>
<tr>
<td>MS0317</td>
<td>Leveraging reduced descriptions to accelerate kinetic simulations</td>
<td>Tomo-Hiko Watanabe, Shinya Maeyama</td>
</tr>
</tbody>
</table>

Scientific Contents
DEM-CFD Simulation on Powder Mixing in a Tote Blender
Qi Shi, Mikio Sakai

Development of DEM Based Blast furnace Bell-less Top Model and Its Application in Burden Distribution
Sida Liu, Zhaoyang Li, Aibing Yu

Systematic Phase-field Lattice Boltzmann Simulations to Investigate the Coherency Point in Semi-solid Deformation
Namito Yamanaka, Shinji Sakane, Tomohiro Takaki

Advanced discrete element method towards a digital twin based powder system *Keynote Lecture
Mikio Sakai

MS0324 Multiscale and Multiphysics Modelling of the Structural and Mechanical Properties of Energy Storage Materials

Energetics and Dynamics of Lithium Intercalation in Graphite from Machine Learning-based Energy Model
Po-Yu Yang, Chun-wei Pao

Theoretical Insights Toward Alleviating Lattice-Oxygen Evolution in Li-rich Layered Manganese Oxide Cathode Materials
Jyh-Chiang Jiang

Atomic-scale Modelling of Chemo-mechanical Contributions to the Performance of Solid-State Batteries
Donald Siegel

Modeling and Simulations of the Structure and Lithiation Mechanism of Silicon Oxycarbide Ceramics
Chin-Iung Kuo

Catalytic Performance Affected by Hydrogen Spillover Mechanism: A DFT Study
Hsin-Yi Tiffany Chen

Digital Twins of Battery Manufacturing Processes
Alejandro Franco

MS0325 Multiphase flows: experiments, simulations, and modeling

Simulations of Granular Flow Behaviors and Mixing Process in Fluidized Bed Mixer
Shih-Hao Chou, Shu-San Hsiau

The mechanism for hopper flow rate enhancement by an optimally-placed obstacle
Guo-Jie Jason Gao, Fu-Ling Yang, Michael Holcomb, Jerzy Blawzdziewicz

Investigation on Characterization of Force Chain Structure using Discrete
Cheng Chih-ying

MS0326 Multiscale Procedures in Composites and Heterogeneous Materials

Determining upper and lower bounds to the elastic threshold for problems of dissipative strain-gradient plasticity
B Daya Reddy, Stanislav Sysala

2D mesoscale approach for modeling concrete fracture under uniaxial compression using the mesh fragmentation technique
Marcela Gimenes, Eduardo A. Rodrigues, Luis A. Brtencourt Jr, Osvaldo L. Manzoli

Modeling fluid flow in vuggy porous media using coupling finite elements
Murilo Camargo

Plasticity without Phenomenology: a first step
Amit Acharya

MS0327 Multiscale Computational Approach and Informatics of Complex Structures and Advanced Materials

Reactive molecular dynamics simulation study on thermo-resistant properties of thermal protective nanocomposites
Daeun Shin, In-Seok Jeon, Soyoung Lee, Seunghwa Yang

Electroelastic Properties of SW defected h-BN Nanosheets studied by Molecular dynamics simulation
Jaewon Lee

Viscoelastic and Damping Characteristics of Boron Nitride Nanotube/Polymer Nanocomposites Including Interface Effects
Taeho Lee

Computational hygroelastic aging study of cross-linked epoxy-based nanocomposite
In-Soon Jeon, Min Keun Song, Seunghwa Yang

Polymer pyrolysis modelling by coarse-grained molecular dynamics: A parametric study
Vinh Phu Nguyen, Seunghwa Yang, Seung Tae Choi

Multiscale simulation for understanding cheomechanics in layered-type cathode of advanced sodium-ion batteries
Hyungjun Kim, Myungkyu Kim, Duho Kim, Maenghyo Cho

Computational modeling to evaluate effect of the partial debonding on fracture toughness of polymer nanocomposite
Wonsok Lee, Kyungmin Baek, Maenghyo Cho

Temporal homogenization formulation for viscoelastic-viscoplastic materials subjected to local cyclic loading
Wonjae Lee, Hyunseong Shin

An efficient multiscale homogenization modeling approach to describe elasto-plastic behavior of polymer nanocomposites
Jae Hun Kim, Haolin Wang, Jihun Lee, Hyunseong Shin

Multiscale model to predict fracture toughness enhancement and fatigue crack growth behavior of polymer nanocomposites
Haolin Wang, Hyunseong Shin

Effect of Heterogeneous Curing Temperature on Crosslinking Morphology and Mechanical Properties of Epoxy Thermoset Plastic: A Coarse-Grained Molecular Dynamics Simulation
Jiyong Ahn, Hyungbum Park, Maenghyo Cho
2324 Data-Driven Computational Mechanics of hyperelastic materials using MLP, GR and RBF models of Artificial Neural Network
Suhan Kim, Haolin Wang, Hyunseong Shin

2736 Hyperthermal Erosion of Thermoprotective Nanocomposites Under LEO Environment: A Reactive Molecular Dynamics Study
Seunghwa Yang, Jeon In-Seok, Lee Soyoung

2901 Enhanced Lo-Christensen-Wu theory in Laplace domain for the Thermo-Mechanical-Viscoelastic Analysis of Laminated Composite Structures
Jang-woo Ha, Jun-Sik Kim, Maenghyo Cho

2919 Effect of nanoparticle agglomerations on the mechanical behavior of polymer nanocomposite: a coarse-grained molecular dynamics simulation
Taewoo Yoo, Byungjo Kim, Maenghyo Cho

MS0328 Fundamental numerical methods towards accurate, efficient and practical simulations in industrial, environmental and biological applications

368 Development of Isolated Element Method and Analysis of Upper and Lower solution bounds by a New Mixed-Hybrid Variational principle
Etsuo Kazama, Atsushi Kikuchi

805 A Nonhydrostatic Dynamical Core of Atmospheric General Circulation Model Using Multi-moment Method on Cubed-sphere Grid
Chungang Chen, Xingliang Li, Xueshun Shen, Feng Xiao

875 An Adaptive Global Nonhydrostatic Atmospheric Dynamical Core on Cubed Sphere Using Multi-Moment Constrained Finite Volume Method
Pei Huang, Chungang Chen

895 A Non-Negativity Preserving Transport Model Using Multi-Moment Finite-Volume Method and Icosahedral-hexagonal Grid
Zhao Yanfeng, Chen Changang

1493 A 3D Positivity-preserving and Conservative Multi-moment Transport Model on the Cubed-sphere Grid
Jie Tang, Chungang Chen, Xueshun Shen, Feng Xiao, Xingliang Li

1498 A moist nonhydrostatic atmospheric model by multimoment constrained finite volume method
Xingliang Li, Chungang Chen, Xueshun Shen, Feng Xiao

1526 Development of a Numerical Scheme in Computational Fluid Dynamics Based on a Mesh-Constrained Discrete Points Formulation
Takeharu Matsuda, Kohsuke Tsukui, Satoshi li

2202 The application of Piecewise Rational Method in scalar advection of GRAPES
Yong Su

2224 Large-eddy Simulation of Turbulent Flows over Sphere Based on High-order Schemes
Peng Jiang, Bin Xie, Shi Jun Liao

2262 High-fidelity BVD Schemes on Hybrid Unstructured Grids for Single and Multi-phase Compressible Flows
Lidong Cheng, Bin Xie, Xi Deng, Feng Xiao

2348 Particle Filter for Large-Eddy Simulations of Turbulent Boundary-Layer Flow Generation Based on Observations
Napuyo Onodera, Yasuhiro Idomiura, Yuta Hasegawa, Hiromasa Nakayama, Takashi Shimokawabe, Takayuki Aoki

2364 A Hybrid Volume of Fluid and Level Set Interface Capturing Scheme with Quartic Surface Representation for Unstructured Meshes
Yunong Xiong, Bin Xie, Feng Xiao

2994 A Versatile OpenFOAM Solver for High-fidelity Simulation of Incompressible Multiphase Flows based on THINC Scheme
Dezhu Chen

3374 A High-Fidelity Physics-Based Approach for Space Weather Modeling
Jordi Vila-Pérez, Ngoc-Cuong Nguyen, Jaime Peraire

MS0329 Multi-scale modelling of generalised continua and metamaterials

856 Modeling the Amorphous Polymers Behavior from Low to High Strain Rates
A. Francisco C. Alves, Bernardo P. Ferreira, F. M. Andrade Pires

1829 An adaptive multiscale finite element method for strain localization analysis with the Cosserat continuum theory
*Keynote Lecture
Mengkai Lu, Yonggang Zheng, Jianke Du, Liang Zhang, Hongwu Zhang

1885 Size Effects in Fully Second-Order Computational Homogenisation
Igor A. Rodrigues Lopes, Francisco M. Andrade Pires

2588 Multi-scale Modelling of TRIP Alloys and Validation with Automated Parameter Identification
Rui Pedro Cardoso Coelho, Miguel Vieira de Carvalho, Francisco Manuel Andrade Pires
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS0401</td>
<td>Computational modelling and machine learning in biomechanics and biomedical engineering</td>
<td>Biomechanical Evaluation of the Healed Acetabulum with Fixation System Using Finite Element Analysis: A Case Study Pengyun Duan, Xiaohong Ding, Chuncai Zhang, Shipeng Xu, Min Xiong, Weiyu Ni</td>
</tr>
<tr>
<td></td>
<td>1923 Biomechanical Evaluation of the Healed Acetabulum with Fixation System Using Finite Element Analysis: A Case Study</td>
<td>Pengyun Duan, Xiaohong Ding, Chuncai Zhang, Shipeng Xu, Min Xiong, Weiyu Ni</td>
</tr>
<tr>
<td></td>
<td>1103 Insight of biomechanical implications on membrane infolding in the covered stent - from computational and experimental perspective</td>
<td>Chi Wei Ong, Hwa Liang Lee, Pei Ho, Fangsen Cui</td>
</tr>
<tr>
<td></td>
<td>2344 A Numerical Stress-strain Evaluation of Large Intestine Cancer under Stent Treatment</td>
<td>Minori Kuni, Kazuhiro Suga</td>
</tr>
<tr>
<td></td>
<td>2692 Time-dependent topology optimization and machine learning modelling for tissue scaffolds considering bone ingrowth Keynote Lecture</td>
<td>Qing Li, Chi Wu, Jiaqiang Fang, Ali Entezari, Keke Zheng, Yanan Xu, Hala Zreiqat, Grant Steven, Michael Swain</td>
</tr>
<tr>
<td></td>
<td>3086 Computational Hemodynamic Studies of Porcine Pulmonary Artery for Acute Respiratory Distress Syndrome</td>
<td>Rahul Kumar</td>
</tr>
<tr>
<td>MS0402</td>
<td>COMPUTATIONAL BIOMEDICINE AND BIOMECHANICS</td>
<td></td>
</tr>
<tr>
<td>657</td>
<td>Numerical Simulation of Coagulation Cascade in Aortic Dissection with Two Tears</td>
<td>Yan Wang, Kun Luo, Jianen Fan</td>
</tr>
<tr>
<td>1460</td>
<td>Energy stable moving mesh strategy for simulating dynamics of millimetric droplets on inclined non-homogeneous surfaces</td>
<td>Filip Ivancic, Maxim Solovchuk</td>
</tr>
<tr>
<td>2490</td>
<td>Investigation of the Inertial Cavitation Threshold under a Dual-Frequency Acoustic Signal in Various Soft Tissues</td>
<td>Tanina Filonets, Maxim Solovchuk</td>
</tr>
<tr>
<td>2881</td>
<td>Mathematical modeling of ion transport through an ion channel</td>
<td>Kumar Saurabh</td>
</tr>
<tr>
<td>2894</td>
<td>Functional Analysis of Healthy and Heart Failure Tissue Populations using 3D Cardiac Electromechanical Models</td>
<td>Ilsebeth van Herck, Henrik Finsberg, Cécile Daversin-Catty, Maria Teresa Moro, Beatriz Trenor, Hermenegild Arevalo, Samuel Wall</td>
</tr>
<tr>
<td>MS0403</td>
<td>Molecular and Cellular Biomechanics</td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>Biomolecular Mechanics Revealed From Gaussian Accelerated Molecular Dynamics</td>
<td>Yinglong Miao</td>
</tr>
<tr>
<td>887</td>
<td>Mechanical response of T-cell receptors</td>
<td>Wonmuk Hwang</td>
</tr>
<tr>
<td>1103</td>
<td>The Gating Mechanism of the Mechanosensitive Ion Channel NompC</td>
<td>Chen Song</td>
</tr>
<tr>
<td>1494</td>
<td>Conformational Entropy of FG-Nucleoporins Plays the Key Role in Creating the Selective Transport Barrier in the Nuclear Pore Complex</td>
<td>Atsushi Matsuda, Mohammad Mofrad</td>
</tr>
<tr>
<td>MS0404</td>
<td>COMPUTATIONAL BIOMECHANICS: ADVANCED METHODS AND EMERGING AREAS</td>
<td></td>
</tr>
<tr>
<td>1598</td>
<td>Microtubules’ Bends, Cryo-Cool Ribosomes, and Wet Proteins Keynote Lecture</td>
<td>Helmut Grubmüller</td>
</tr>
<tr>
<td>1632</td>
<td>Mechanical Positive Feedback Mediated by Pizeo1 and Integrin Causes Irreversible Cardiac Fibrosis</td>
<td>Feng Xu</td>
</tr>
<tr>
<td>1984</td>
<td>Image-based Simulation Study on Mechanosensing Amplification Mechanism at Osteocyte Processes in Bone Canalicular Space</td>
<td>Taiji Adachi, Yuka Yokoyama, Hiroshi Kamioka, Yoshitaka Kameo</td>
</tr>
<tr>
<td>2834</td>
<td>Effect of hydrostatic pressure on TRV1 conformation using molecular dynamics simulation</td>
<td>Shukei Sugita, Muhammad Harith Zamri, Yoshihiro Ujihara, Masanori Naamura, Mohammad Mofrad</td>
</tr>
<tr>
<td>3102</td>
<td>Disorder-to-order Transition in Multi-cellular Systems</td>
<td>Umnia Doha, M Taher Saif</td>
</tr>
<tr>
<td>MS0405</td>
<td>Computational Biomechanics and Biomimetics</td>
<td></td>
</tr>
<tr>
<td>1922</td>
<td>Modeling cardiac mechanics using a cell-based framework</td>
<td>Ashild Telle, James D. Trotter, Xing Cai, Henrik Finsberg, Miroslav Kuchta, Joakim Sundnes, Samuel T. Wall</td>
</tr>
<tr>
<td>1389</td>
<td>Steklov-Poincaré analysis of the basic three-domain stent problem Keynote Lecture</td>
<td>Irving Martinez, Alessandro Veneziani</td>
</tr>
<tr>
<td>2165</td>
<td>An Efficient Space-Time Adaptive Numerical Method for Fully Coupled Electromechanical Models of Cardiac Tissue</td>
<td>Dennis Oggiermann, Daniel Balzani, Luigi E. Perotti</td>
</tr>
<tr>
<td>2307</td>
<td>A multi-physics model for myocardial perfusion in the human heart Keynote Lecture</td>
<td>Christian Vergara, Simone Di Gregorio, Giovanni Montino Pelagi, Paolo Zunino, Marco Fedele, Luca Crugnola, Laura Fusini, Gianluca Fontone, Alfio Quarteroni</td>
</tr>
<tr>
<td>2358</td>
<td>Mixed-dimensional Modeling of Stented Arteries using Geometrically Exact Beam Theory</td>
<td>Nora Hagemayer, Ivo Steinbrecher, Matthias Mayr, Alexander Popp</td>
</tr>
<tr>
<td>3411</td>
<td>Dynamic Fracture of Skin and Subcutaneous Tissue During Auto-injection</td>
<td>Vivek Dharmanganad Sree, Arezoo Arderkani, Pavlos Viachos, Adrian Buganza Tepole</td>
</tr>
<tr>
<td>MS0406</td>
<td>Computational Biomechanics and Biomimetics of Flapping Flight</td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>Advances in Computational Biomechanics of Insect-inspired Flapping Flights Keynote Lecture</td>
<td>Hao Liu</td>
</tr>
<tr>
<td>1000</td>
<td>Aerodynamics and Energetics in Hawkmoth Forward Flight</td>
<td>Yujing Xue, Xuefei Cai, Hao Liu</td>
</tr>
</tbody>
</table>
1100 The Aerodynamics in Multiple Flight Modes of a Dragonfly
Ryusuke Noda, Xiaohui Liu, Csaba Heffler, Wei Shyy, Huiche Qiu

1362 Effect of Inclination Angle of Origami Winged Seeds on the Terminal Velocity and Rotation Period
Jing-fang Cai, Ya-Chen Hsu, Ji-Yang Jiang

1489 Modeling Freely Flying Monarch Butterflies Using a Strongly Coupled High Fidelity Numerical Framework
Jeremy Potth, Chang-kwon Kang, Taeyeong Lee, Hikaru Aono

1646 Computational analysis of fluid-structure interaction in case of dragonfly flying in the vortex street
Ying Wang, Shiyi Wei, Huiche Qiu

1757 S-Version of Finite Element Method Using B-Spline Basis Function for FSI Analysis
Nozomi Magome, Naoto Mitsume

1901 Estimating Lift in Flapping Flight from Wake by Using a Vorticity-Centroid Based Lift Formula
Shizhao Wang, Tianshu Liu, Guowei He

2120 Fluid-Structure Interaction Analysis of Flapping Wing in the Martian Environment
Kosuke Kawakami, Shigeki Kaneko, Givon Hong, Hideaki Miyamoto, Shinobu Yoshimura

2144 A Multi-resolution MPS-FEM Coupling Method and Its Application to flapping flight Simulation
Zumei Zheng

2234 An immersed boundary regularized lattice Boltzmann method for acoustic simulations of bird-inspired FSI problems
Methma Rajamuni, Zhengliang Liu, Fangbqiao Tian

2474 Relative Importance of Aerodynamic and Inertial Forces in Passive Cambering of Insect’s Flapping Wings
Minato Onishi, Daisuke Ishihara

2914 Fluid-Structure Interaction Design of Insect-Inspired Flapping Wings with 2.5-Dimensional Structure
*DaiSuke Ishihara, Vinay Shankar, Minato Onishi

MS0407 Multiscale Modeling and Machine Learning in Biomechanics

475 Shear Induced Cell Damage: Multiscale Modelling and Experimental Validation
*Keynote Lecture
Ratul Paul, Mehdi Nikfar, Meghanaz Razizadeh, Sheng Wang, Yaling Liu

1505 Multi-scale Simulations of Pulmonary Airflow based on a Coupled 3D-1D-0D Model
Fei Jiang, Xian Chen, Tsuchihiro Hirano

2050 PDE-preserved network architecture for predicting spatiotemporal dynamics based on differentiable programming
Jian-xun Wang, Xinyang Liu, Han Gao, Pan Du

2250 Physics-Informed Data-Driven Parameter Identification of Human Musculo-Skeletal Systems
Karan Janua, Xiaodong He, Jiun-Shyan Chen, Qizhi He

2443 Modeling Intracellular Transport and Traffic Jam in 3D Neurons Using PDE-Constrained Optimization
Angrn Li, Yongjie Jessica Zhang

MS0408 Modelling and simulation of thermo-mechanical effects in excitable tissues

478 Thermo-mechanical Effect of Excitable Lipid Dynamics in Spatially Confined Cell Membranes
Marcel Horning, Tatsuo Shibata

2525 A Fully Coupled Thermo-Hyperelastitve Constitutive Model of Myocardium: The Role of Thermodielastic Anisotropic Conduction and Cellular Death During Radiofrequency Catheter Ablation
Leonardo Molinar, Alessio Gizzo, Luca Gerardo Giorda

3153 Mixed methods for large-deformation poroelasticity and application to oedema formation
Ricardo Ruiz Baier, Nicolas Barnafi

3217 A New Computational Model to Study Mechanisms Governing E-cadherin-based Cell-Cell Adhesion Junction Formation and Maintenance
Qilin Yu, William Holmes, Jean Thiery, Rodney Lwwo, Vijay Rajagopal

MS0409 Multiphysics and Data-driven Modeling for Cardiovascular Biomedicine

1178 Data-driven Reduced Order Models for Cardiovascular Simulations
Luca Pegolotti, Natalia Rubio, Martin Pflaue, Eric Darve, Alison Marsden

1231 Identifying the Biomechanical Properties of a Flexible Thrombus
James Hewett, Mathieu Seller

2052 Image-to-Analysis for Gated Volumetric Echocardiography
David Joseph Gundersen, David Newton, Conner Claire Earl, Frederick W. Damer, Wei Hao, Gordon Yang, Guang Lin, Alison Leslie Marsden, Hector Gomez, Craig J Goergen

2154 A SYSTEMATIC COMPARISON OF REDUCED-ORDER MODELLING AND PHYSICS INFORMED MACHINE LEARNING TECHNIQUES TO ACCELERATE ONE-DIMENSIONAL BLOOD FLOW COMPUTATIONS
Ahmet Sen, Miquel Aguirre, Laurent Navarro, Stéphane Avril

MS0406 Female pelvic floor biomechanics

1628 Improving Childbirth Outcomes: A Biomechanical Approach
Dulce Oliveira, Teresa Mascarenhas

1891 UTERINE PROLAPSE REPAIR SURGERY: A COMPUTATIONAL ANALYSIS
Elisabete Silva, Marco Parente, Teresa Mascarenhas, Renato Natal Jorge, António Fernandes

2410 Biomechanical study of abnormal uterine activity using an electro-chemo-mechanical constitutive model
Daniel Padigl, Margarida Borges, Maria Vla-Poouza, Dulce Oliveira, Ewelina Malanowska, Kristin Myers, Marco Parente, Renato Natal Jorge

2422 Computational modeling of a fetal malposition during a maternal flexible-sacrum birthing position
Rita Mumma, Margarida Borges, Dulce Oliveira, Marco Parente, Teresa Mascarenhas, Renato Natal Jorge

2643 Abdominal and Pelvic Floor Muscles in Continent and Incontinent Women - a Biomechanical Perspective
Alice Carvalhais, Carlos Castro, Renato Natal Jorge
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2518</td>
<td>Geometric deep learning and statistical shape modeling for fast surrogate CFD simulations of patient-specific hemodynamics</td>
<td>Pan Du, Han Gao, Xiaozhi Zhu, Jian-xun Wang</td>
</tr>
<tr>
<td>2654</td>
<td>Multiphysics and multiscale models for the numerical simulation of the cardiac function</td>
<td>Luca Dede'</td>
</tr>
<tr>
<td>2659</td>
<td>Quantifying the Range of Mechanical Stimuli from the Severity and Duration of Aortic Coarctation that Prevents Permanent Vascular Remodeling</td>
<td>Jamanap Azarnoosh, Ashar Ghorbanni, John LaDisa</td>
</tr>
<tr>
<td>2679</td>
<td>Immersed Discrete Element Method With Applications In Embolus Transport</td>
<td>Chayut Teeraratkul, Debanjan Mukherjee</td>
</tr>
<tr>
<td>2691</td>
<td>Discovery of Reduced Order Models for Flow through a Coronary Stenosis</td>
<td>Elizabeth Livingston, Alberto Figueroa, Krishna Ganikpati</td>
</tr>
<tr>
<td>2692</td>
<td>Effect of Non-sinus-matching Bioprosthetic Aortic Valve Design on Coronary Flow</td>
<td>Mehdi Saraeian, Adarns Krishnamurthy, Ming-Chen Hsu</td>
</tr>
<tr>
<td>2697</td>
<td>Assessment of stroke risk in pediatric cerebrovascular disease through patient-specific modeling</td>
<td>John Horn, Michael Johnson, Zbigniew Starosolski, Avner Meoded, Dianna Milewicz, Ananth Annapragada, Zbigniew Starosolski, Avner Meoded, Dianna Milewicz, Ananth Annapragada, Shaolilin Hossain</td>
</tr>
<tr>
<td>2727</td>
<td>Wall Shear Stress Estimation for 4D Flow MRI using Navier-Stokes Equation Correction</td>
<td>Jiacheng Zhang, Sean M Rothenberger, Melissa C Brindise, Michael Markl, Vitaliy L Rayz, Pavlos P Vlachos</td>
</tr>
<tr>
<td>2739</td>
<td>Regional Variations in Articular Cartilage Ultrastructure and Micromechanics</td>
<td>Jingrui Hu, Keke Zheng, Eve Nebbiolo, Jessica Mansfield, Ellen Green, Peter Winlove, Ben Sherlock, Junning Chen</td>
</tr>
<tr>
<td>2748</td>
<td>A Soft-Tissue Driven Bone Remodelling Algorithm in Mandibular Residual Ridge Resorption Based on Patient CT Image Data over 5 Years</td>
<td>Jingxiao Zhong</td>
</tr>
<tr>
<td>2750</td>
<td>Regional Variations in Articular Cartilage Ultrastructure and Micromechanics</td>
<td>Jingrui Hu, Keke Zheng, Eve Nebbiolo, Jessica Mansfield, Ellen Green, Peter Winlove, Ben Sherlock, Junning Chen</td>
</tr>
<tr>
<td>2758</td>
<td>Geometric Control of Bone Tissue Growth: Analysing Asymmetric Osteons</td>
<td>Solene Hegarty-Cremer, Cristina Andreassen, Xenia Borggaard, Matthew Simpson, Thomas Andersen, Pascal Buenzli</td>
</tr>
<tr>
<td>2765</td>
<td>Numerical simulation of active surface dynamics leading to cell division and migration</td>
<td>Lucas Wittwer, Eloy de Kinkelder, Sebastian Aland</td>
</tr>
<tr>
<td>2766</td>
<td>Modeling and Simulation of Osteocyte-Fluid-Interaction</td>
<td>Luoding Zhu, Jared Barber, Sungoo Na, Hiroki Yokota</td>
</tr>
<tr>
<td>2769</td>
<td>Fluid-structure interaction simulations of blood cells and the endothelial surface layer</td>
<td>Thomas Faj, Ying Zhang</td>
</tr>
<tr>
<td>2770</td>
<td>Computational Investigation of Cell Shape Changes Driven by Actomyosin Contractility</td>
<td>Fahmida Sultana Laboni, Makito Miyazaki, Taeyoon Kim</td>
</tr>
<tr>
<td>2771</td>
<td>A numerical study on the generic flexible-cell focus in viscoelastic flows</td>
<td>Jingtao Ma, Fang-Bao Tian, John Young, Joseph C.S. Lai</td>
</tr>
<tr>
<td>2774</td>
<td>Computational Modeling of Pressure-Driven Cell Motility under Confinement</td>
<td>Wanda Strychalski, Calina Copos</td>
</tr>
<tr>
<td>2775</td>
<td>On a Finite Strain Modeling of Yeast Cell Growth Stimulated by Turgor Pressure</td>
<td>Zeinab Awada, Boumediene Nedjar</td>
</tr>
<tr>
<td>2776</td>
<td>Microscale flow dynamics of blood cells in health and disease</td>
<td>Xuejin Li</td>
</tr>
<tr>
<td>2777</td>
<td>The Effects of Vessel Wall Proteins on Red Blood Cell Dynamics at Diverging Vessel Bifurcations</td>
<td>Jared Barber, Carlson Triebold</td>
</tr>
<tr>
<td>2778</td>
<td>Agent-Based Models of Biophysical Interactions in Multicellular Systems</td>
<td>Paul Macklin</td>
</tr>
<tr>
<td>2779</td>
<td>Applying 3-D Computational Homogenization to Model Collagen Microdamage in Cartilage</td>
<td>Ashkan Almasi, Tim Ricken, Phoebe Szarek, David M. Pierce</td>
</tr>
<tr>
<td>2780</td>
<td>A Novel Chemo-Mechano-Biological Model of Osteoarthritic Cartilage</td>
<td>Muhammed M. Rahman, Paul Watton, Thomas Ost, Corey Neu, David Pierce</td>
</tr>
</tbody>
</table>
Regional Variation of Corneal Stiffness with Keratoconus Progression
Ahmed Elsheikh, Bernardo Lopes, Ashkan Elasy, Haixia Zhang, Ahmed Abass, Prema Padmanabhan

Biomechanics of Fetal Aortic Stenosis with Evolving HLHS and Fetal Aortic Valvuloplasty
Wei Xuan Chan, Laura Green, Meifeng Ren, Hong Wong, Choon Hwai Yip

Introducing an Inverse Finite Element Model of the Ventilated Lung
Mohammad Maghsoudi-Ganjeh, Crystal Mariano, Samaneh Sattari, Mona Eskandari

Biomechanics of the Laminar Load-bearing and Neural Tissues with Body Position Change
Alessia Karimi, Seyed Mohammadi Alamouti, Reza Razaghi, Christopher A. Girkin, J. Crawford Downs

Imaging Informed Computational Models of Skin
Ed Sander, Nathan Witt, Alan Woessner, Kyle Quinn

On the Sensitivity of Tricuspid Valve Models Built From Non-invasive Imaging Data
Mudang Mathur, Chien-Yu Lin, Rohan Shaid, Robyn Fong, William Hiesinger, Manuel Rausch

Quantitative Stretch-Induced Collagen Fiber Recruitment and Microarchitecture Changes Using Instant Polarized Light Microscopy
Po-Yi Lee, Bin Yang, Ian A Sigal

Revealing Swallowing Mechanics by using Muscle-driven Computer Simulation Created based on Four-dimensional Computed Tomography and Muscle Anatomy
Yukihito Michiwaki, Takahiro Kikuchi, Tetsu Kamiya

Understanding and predicting arterial elasticity by deep learning
Christian Cyron, Kevin Linka, Selda Sherifova, Cristina Cavinato, Jay Humphrey, Gerhard Holzapfel

Magnetic Resonance Imaging Informed Models of Cardiac Performance
Daniel Ennis, Kevin Moulin, Michael Loecher, Luigi Perotti

Generation of Dynamic High-Order Patient-Specific Biomedical Meshes from Medical Images Using an Advancing Front Approach
Fariba Mohammadi, Suzanne Shontz, Cristian Linte

Using Digital Image Correlation to Validate a Finite ElementDamage Model of Human Meniscus
Derek Nesbitt

Modeling Neuron Growth Using Isogeometric Advancing Front Approach

Integrating Medical Imaging, Computer Vision, and Artificial Intelligence for Biomedical Modeling and Simulation Applications
Cristian Linte, SM Kamrul Hasan, Roshan Reddy Upendra, Peter Jackson, Zixin Yang, Richard Simon, Fariba Mohammadi, Suzanne Shontz

Numerical simulation tool for image-based bone healing process based on the Cartesian Grid Finite Element Method
Antolin Martinez Martinez, Enrique Nadal Soriano, Carlos Gutierrez San Roman, Juan Jose Rodenas Garcia
MS0417 Computational multiscale modeling in biomechanics

1892 Computational Insights into the Conformational Changes of Matrix Metalloproteinase in the presence of Nanoplastics
Yen-Yu Lai, Shu-Wei Chang

2553 An elastoplastic model of cortical bone and its return-free integration
Li-Wei Liu, Zhi-Ce Ciou

2580 Yield surface evolution of trabecular bone
Li-Wei Liu, Chang-Yun Yang

2595 Molecular Dynamics Study on Mechanical Properties of Polyethylene Glycol / 2-Hydroxyethyl Methacrylate Organogel with Lithium Chloride
Yu-cheng Lai, Chi Ching Chou

MS0418 ADVANCES IN CHARACTERIZATION AND MODELING OF BIOLOGICAL SOFT TISSUES

1654 Compressive Instabilities cause Densification Patterns in the Fibrous Extracellular Matrix, Facilitating Cell Migration and Invasion: Discrete Model Predictions
Chrysovalantou Kalaitzidou, Georgios Grekas, Phoebus Rosakis, Charialambos Makridakis, Andreas Zilian

MS0420 Modeling of the cardiovascular and cerebral system with application to clinical medicine

1953 Ionic mechanisms of ST segment elevation in electrocardiogram during acute myocardial infarction
Jun-ichi Okada, Katsuhiko Fujii, Kazunori Yoneda, Takashi Iwasu, Takumi Washig, Iosei Komuro, Tohshiaki Hisada, Seiyo Sugura

2314 Angioscopy Visibilities for Stenotic Arteries using Computational Fluid Dynamics
Daisuke Goanno, Kohei Mitsuzuka, Yujie Li, Mingzi Zhang, Kazunori Horie, Kazuki Takeda, Yutarou Kohata, Hitomi Anzai, Makoto Ohta

2336 Numerical simulation of the evolution of an intracranial aneurysm with pathological tissue remodeling
Misanori Nakamura, Yuki Tanaka, Yoshihiro Ujihara, Shuhei Sugita, Takanobu Yagi

2357 Generation of Virtual Patient Cerebral Arteries Focused on Geometric Feature Distributions Using Multivariate Normal Distribution
Kazuyoshi Jin, Ko Kitamura, Junya Misumi, Naoko Mori, Makoto Ohta, Hitomi Anzai

2362 Statistical Shape Model of aorta and carotid arteries by using relative coordinates
Keichiro Shiraishi, Meghane Decroocq, Makoto Ohta, Gaoyang Li, Haoian Wang, Carole Frindel, Hitomi Anzai

2716 Patient-Specific Biomechanics of the Right-Noncoronary Bicuspid Aortic Valve and Age-Matched Tricuspid Aortic Valve Control
Hail Kanik, Kandail Harkamaljot, Benjamin Goot, Joy Lincoln, John LaDiva Jr.

3094 Personalized Computational Modeling Strategy to Simulate the Outcomes of Functional Mitral Regurgitation Repair Techniques
Gediminas Gaidulis, Muralidhar Padala

3152 Endovascular simulation system to improve mechanical thrombectomy for acute ischemic stroke
Naaki Kakeko, Taichiro Imahori, Ariel Takayanagi, Mahsa Ghovvati, Lea Guo, Oma Selim, Hamidreza Saber, Satoshi Tateshima

MS0421 Musculoskeletal Biomechanics

1128 Whiplash Simulation: How Muscle Modelling and Movement Interact
Matthew Millard, Tobias Siebert, Norman Stutzig, Jörg Fehr

1358 Towards in vivo Passive and Active Force Estimation of Skeletal Muscle using Shear Wave Elastography
Manuela Zimmer, Benedict Kleiser, Justus Marquetand, Filiz Ates

1681 A 3D Finite Deformation Continuum Model Framework for Active Synthetic and Biological Materials
Oleg Volgin, Dmitry Kolomensky

1887 Understanding in vivo Skeletal Muscle Mechanics within Connective Tissue Matrix: An Intraoperative Approach
Filiz Ates

2230 Machine Learning to improve Musculoskeletal Biomechanics Analysis
Eva Dorischky, Markus Gambietz, Marlies Nitschke, Anne Koelewijn

3397 Effect of Lumbar Muscle Atrophy on Human Lumbar Intervertebral Disc Loading Change
Bing Qin, Michele Baldoni, Xin Gao, Qiaoqiao Zhu

MS0422 Computational Continuum Biomechanics

628 Cleft palate treatment for late patients – a study on simultaneous distractor application as an improvement on traditional orthodontic procedures
Elissa Talma, Manuel Lagravere, Daniel Romanyk, Sandra Melisa Velez- Muriel, Diego Garzón-Alvarado, Henrique Pretti, Estevam B. Las Casas

1144 Validation of FEM-based patient-specific knee joint motion simulation
Elin Theilen, Kaywan Izzadpanah, Thomas Lange, Cora Huber, Joachim Georgii

1864 Computational cardiac electromechanics: the role of mechano-electric feedback and its arrhythmogenic effects in three-dimensional ventricular models
Yongjae Lee, Barış Cansız, Michael Kaliske

2209 Modeling the two-pathway contraction of smooth muscle in arterial walls
Klemens Uhlmann, Daniel Balzani

3050 Fractional Viscoelastic Modeling of Cardiovascular Soft Tissues
Wili Zhang, David Nordsletten
MS0423 Multiscale biofluid mechanics: from cells to organs

437 A Numerical Study on the Effects of Mechanical Properties of Red Blood Cells on Rheology in Narrow Microchannels
Deyun Liu, Kazuyasu Sugiyama, Xiaobo Gong

726 Study on flow behaviors of hemoglobin-based oxygen carriers through microvessels
Toku Hyakutake, Sota Kambara, Yohei Miyoshi, Yuya Tsutsumi

924 Deformation Mechanics of a Red Blood Cell under Shear Flow
Ken-ichi Tsubota

1110 Data Assimilation Method for Estimating Membrane Permeability Based on the Lagrange Multiplier Method: Formulation and Fundamental Examination
Suguru Miyauchi, Shintaro Takeuchi, Kenichi Funamoto

1488 Quantitative Prediction of Rolling Dynamics of Leukocyte-inspired Microroller in Blood Flow
Xiaojing Qi

1985 Numerical analysis of equilibrium state and lateral migration of erythrocytes in 3D cylindrical microchannel
Xiaolong Wang, Satoshi Ii, Kazuyasu Sugiyama, Shigeho Noda, Peng Jing, Deyun Liu, Xiaobo Gong

1987 A Numerical Investigation of the Membrane Tensions and Motional Behaviors of Circulating Tumor Cells in Microvessels
Peng Jing, Satoshi Ii, Xiaolong Wang, Kazuyasu Sugiyama, Shigeho Noda, Xiaobo Gong

2355 Numerical analysis of the lateral movement of red blood cells in circular microchannels
Naoki Takeishi, Hiroshi Yamashita, Naoto Yokoyama, Masako Sugihara-Seki

2684 Effects of Geometrical Alteration on Left Atrial Hemodynamics after left upper lobectomy
Wentao Yi, Tomohiro Otani, Takuya Yoshida, Shunsuke Endo, Shigeo Wada

MS0424 Computational Mechanics and Mechanobiology of the Shoulder Joint

Joshua Johnson, Brendan Patterson, Donald Anderson

2606 Finite Element Model of Articular Sided Rotator Cuff Tear
Mason Garcia, Patrick Williamson, Ara Nazarian

3328 Clinical Relevance: the Key Motivator in Designing and Conducting Computational Studies of the Shoulder
Joseph Deangelis

MS0425 Musculoskeletal Modeling Across the Lifespan: Biomechanics from Young to Aging to Aged

1406 A Computational Biomechanical Model of Infant Triceps Surae Muscles Generated from Comprehensive Digitized Fascicles
Mousa Kazemi, S. Ali Mirjallili, Anne Agur, Justin Fernandez, Thor Besier, Geoffrey Handsfield

MS0426 In silico clinical trials of cardiac disease

2024 Membrane Left Ventricle Model Generated from Echocardiography
Bogdan Milicevic, Miljan Milosevic, Vladimir Simic, Danijela Trifunovic, Nenad Filipovic, Milos Kojic

2033 Coupled Machine Learning and Finite Element Analysis of Heart Left Ventricle in Patients with Cardiomyopathy
Keynote Lecture
Tijana Šušteršič, Andjela Blagojević, Bogdan Milicević, Miljan Milosjević, Nenad Filipović
MS0502 COMPUTATIONAL MECHANICS OF SOFT MATTER

659 Structural optimization design of intelligent hydrogel-based soft devices
Yisong Qiu, Shuaiqi Zhang, Weisheng Zhang, Hongfei Ye, Hongwu Zhang, Yonggang Zheng

797 Study on Chemical Potential-Induced Shape Memory Behavior of Hydrogels
Yiheng Xue, Zishun Liu

1226 Discrete Network Modelling of Topology-Property Relationships in Rubbery Networks
Laurence Brassart, Lucas Mangas Araujo, Ivan Kryven

1251 Machine-learning Assisted Coarse-grained Molecular Dynamics Model Development of Double Network Hydrogels
Ting Zheng, Xia Liu, Qing-Sheng Yang

Jing-Ang Zhu, Zishun Liu

1292 Experimental and Numerical Study on Water-affected Adhesion of Polyacrylamide Hydrogels
Zidi Zhou, Jincheng Lei, Zishun Liu

1950 Effect of Molecular Structure on Mechanical Properties of Polycarbonate: A Coarse-grained Molecular Dynamics Study
Tatchaphon Leelaprachakul, Atsushi Kubo, Yoshihara Umeno

2859 Computational Modeling of Fingering in Stretched Hydrogel Cylinders
Daniel Pickard, Adam Śliwiak, Anwar Koshakji, Bianca Giovanardi, Raul Radovitzky

3261 Modelling the packing process of fiber/polymer composite powder in additive manufacturing
*Keynote Lecture
Pengfei Tan, Fei Shen, Wei Shian Tey, Kun Zhou

MS0503 COMPUTATIONAL DESIGN OF ARCHITECTED MATERIALS

1136 Multimaterial Microstructural Design using Neural Networks
*Keynote Lecture
Aaditya Chandrasekhar, Saketh Sridhara, Krishnan Suresh

1372 Computational Design of a Multiresonant Layered Acoustic Metamaterial for Low-Frequency Noise Attenuation
David Roca, Juan Cante, Oriol Lloberas-Valls, Teresa Pamies, Javier Oliver

1888 Multi-material topology optimization of microstructures using strength criteria
Fábio Conde, Pedro Coelho, José Guedes

2237 Modular-topology optimization arising from free material optimization and hierarchical clustering
Matek Tyburec, Martin Doškář, Martin Krúžík, Jan Zeman

2537 Multiscale Topology Optimization for the Design of Patient-Specific Orthotic Devices
Nicola Ferro, Simona Perotto, Daniele Bianchi, Raffaele Ferrante, Marco Marinsis

3244 A new efficient methodology for the analysis of mechanical metamaterials with elastic instabilities
Nestor Ross, Carlos G. Mendez, Alfredo Huespe

MS0504 Virtual Multi-physics Computational Design and Manufacturing Simulation of Materials and Structures

836 Computational Metamaterial Beam Modeling of Topological Phase Transition via Periodic Alternate Elastic Foundation
Guifeng Wang, Zhenyu Chen, C.W. Lim

896 A thermal strain energy calculation method of imperfect functionally graded sandwich cylindrical shells for wave propagation analysis
Chen Liang, Zhenyu Chen, C.W. Lim

2792 Vibration properties of functionализed diamane
Zhuoquin Zheng, Haifei Zhan, Lifeng Wang

2917 Thermal metamaterial for heat manipulators
Chintan Jansari, Elena Atroshchenko, Stephane P.A. Bordas

MS0506 New Advances in Phase Change Materials

1163 Phase change materials for thermoelectric micro-energy harvesting
*Keynote Lecture
Santiago Madruga

MS0507 Multiscale Topology Optimization

677 Multiscale Topology Optimization: a Case for Pareto-Optimal Metamaterials
Tom De Weer, Nicolas Lammens, Karl Meerbergen

2892 Multiscale Actuated Shells Structures
Rob Hewson, Ryan Murphy, Alvaro Cea, Martin Muir

3033 Two-Scale Topology Optimization respecting Buckling on Micro- and Macroscale
Daniel Hubner, Fabian Wein, Michael Stingl

MS0508 Lessons from nature: design of bioinspired architected materials

1198 Controlling Failure Regimes of Brick-and-Mortar Structures through Shape
Georgia Hunter, Lee Djuman, Laurence Brassart, Andrey Molotnikov

2010 Initial Yield Surface of Cellular Sheet TPMS Lattices
Nareg Baghous, Imad Baroum, Rashid Abu Al-Rub

2399 Extremely deformable materials inspired by cytoskeletal networks
Marco Pensalfini, Tom Golde, Xavier Trepat, Mariano Amojo

Sabrina Shen, Markus Buehler

2847 Deep Learning Model to Predict and Generate New Protein with Desired Secondary Structure Content
Chi-Hua Yu, Wee Chen, Yu-Hsuan Chiang, Kai Guo, Zaira Mandles, David Kaplan, Markus Buehler

2856 How to protect a weak spot inside a load-bearing architected material: a lesson from bone
Timothy Volders, Laura Zorzetto, Hajar Zangi, Richard Weinkamer, Davide Ruffoni

3021 Multi-scale non-linear modeling of biomimetic composites using a coarse-graining approach
Mauricio Cruz Saldivar, Eugeni L. Doubrovski, Mohammad J. Mirzaali, Amir A. Zadpoor.
3230 Music-based proteins: new design opportunities for architected biomaterials
Grace I. Anderson, Mario Milazzo, Markus J. Buehler

3237 Hierarchical bioinspired architected materials and structures
Flavia Libonati, Ludovico Musenich, Alessandro Stagni
MS0601 Interfacial Flow Simulation

2019 Numerical modelling of the dissolution of composite particles
Mostafa Saffari Shadloo, Amin Rahmat, Alessio Alexiadis, Manuel Hopp-Hirschler

2155 A high-precision partition coupled Eulerian-Lagrangian method for compressible fluid with large deformation
Jiangning Ning, Ziyun Jin, Xiangzhao Xu

2806 Development of Efficient and Accurate Simulation Method for Chemical Conversion Tcond Phenomena
Kenji Amaya, Junam Kwon, Masahiro Nakajima, Miku Goto, Hidekazu Fukushima

3336 Agglomeration regimes of particles in shear flow
Yundong Qian, Shane Usher, Peter Scales, Anthony Stickland, Alessio Alexiadis

MS0602 Advanced Multi-Physics CFD Simulations in Science and Engineering

488 Deep Learning-based Unsteady Flow Estimation: Nonlinear Convolution of Wakes behind an Oscillating Cylinder
Hikaru Chida, Taichi Nakamura, Kai Zhang, Koji Fukagata

654 Neural-network-based estimator for turbulent flows from limited hot information
Reno Miura, Mitsuki Matsuo, Taichi Nakamura, Koji Fukagata

719 Flow Separation Control by Using Wave-like Body Force in Backward-facing Step Turbulent Flow
Junichi Morita, Hirono Mamori, Takeshi Miyazaki

750 Investigation of Multi-phase-field Model without Lagrange Multiplier for Multiphase Flow Simulation
Shintaro Aihara, Naoki Takada, Tomohiro Takaki

902 A low-cost resolvent analysis of flow around a bluff body
Atsui Sato, Yusuke Nabe, Koji Fukagata

1149 Numerical Simulation of Droplet Impingement on Wall with Thin Liquid Film by E-MPS Method
Masatake Kaneshi, Koji Fukudome, Makoto Yamamoto

1348 DNS-CNN Simulation of Viscoelastic Turbulent Flow using U-Net
Masaya Tachiro, Takahiro Tsukahara

1423 Numerical Investigation of Solidification Process of Impinging Supercooled Water Droplet using Explicit Moving Particle Simulation *Keynote Lecture*
Kohei Fukudome, Yuka Kono, Makoto Yamamoto

1495 Investigation of Steam-Diluted Hydrogen/Oxygen Lifted Flame Formed with Cross Jets in a Multi-Cluster Burner
Yousuke Tomisawa, Yuki Minamoto, Masayasu Shimura, Mamoru Tanahashi

1550 Modeling of PM2.5 Deposition Behavior on the Wall Surface
Yoko Fujima, Rino Arai, Yusuke Nabe, Koji Fukagata

1793 Interaction between Indoor and Outdoor Air Pollution in Natural Ventilating Building: Application to Sense-City urban area
Tsubasa Hamada, Fatma Chabi, Rachida Chakir, Delphine Leji, Julien Waeytens

1822 Evaluation of Drag Reduction Effect and Surface Stress on Riblet in Turbulent Channel Flow Using Direct Numerical Simulation
Toshiaki Tanisho, Achihiro Mitsuishi, Kaoru Iwamoto, Akira Murata

2335 Microfluidic Multiphase Flow Simulation Using an Advanced Diffuse-interface Model-based Method
Naoki Takada, Katsuo Mogi, Tomohiro Takaki, Shintaro Aihara, Satoshi Someya, Soumei Baba, Shimpei Saito

2459 Direct Numerical Simulation of Turbulent Flow Controlled by Wall Oscillation in Concentric Annular Pipe
Ayaka Hagishimoto, Junichi Morita, Hirono Mamori, Takeshi Miyazaki

2502 Flow Structure Analysis Related to the Acoustic Wave Generation in Subsonic Jet Using Dynamic Mode Decomposition
Shota Morita, Aiko Yakano, Christophe Bogey, Shigeru Obayashi

2576 Validation of a New 2-scalar Flamelet Approach of LES for Turbulent Combustion
Tongtong Cui, Hiroshi Terashima, Nobuyuki Oshima

2850 Flow field analysis around salt particle collection device of dry gauze method using porous media model
Yuta Tsukubura, Kyohei Noguchi, Tomomi Yagi

2890 Numerical simulation of interaction between two Savonius turbines aimed at practical application of ocean current power generation
Akiko Minakawa, Ietuya Kawamura

2909 Low-Dimensional Representation of Unsteady Flow based on CNN and LSTM
Yusuke Shimoda, Naoya Fukushima

3407 A one-way coupled Lagrangian-Eulerian procedure for the solution of landslide-generated waves
Miguel Maiso, Alessandro Franci, Miguel Maiso Sotomayor, Alejandro Cornejo, Eugenio Ohate

MS0603 Modelling and Simulation of Coupled Solvent Transport and Deformation

784 Investigation of the linear viscoelastic property for polyacrylamide hydrogels during transient equilibrium swelling
Seishiro Matsubara, Akira Takashima, So Nagashima, Shohei Ida, Hiro Tanaka, Makoto Uchida, Dai Okumura

812 Modelling of Bicontinuous Metal-Polymer Composite Actuators
Jana Wilmers, Emma Griffiths, Swantje Bargmann, B. Daya Reddy

1117 A Thermodynamically Consistent Constitutive Model Coupling Diffusion, Reaction and Deformation for Biodegradable Polymers
Zhoushou Pan, Laurence Brassart

2146 Crease Nucleation and Propagation from a V-shaped Notch in an Elastomer
Daiki Nakajima, Ryogo Hoshi, Seishiro Matsubara, So Nagashima, Dai Okumura

2338 Morphological Evolution of Surface Patterns in Hydrogel Bilayers
So Nagashima, Naoki Akamatsu, Seishiro Matsubara, Shohei Ida, Hiro Tanaka, Makoto Uchida, Dai Okumura

2953 Modelling liquid penetration and hygro-expansion in paper
Nik Dave, Ron Peerlings, Thierry Massart, Marc Geers
MS0604 Granular Flows: Modelling and Computational Challenges

1108 DEM Simulation of Particle Mixing in Horizontal Stirred Bed Reactors
Sahar Pourandi, Thomas Weinhart, Igor Ostanin, Anthony Thornton

2044 Continuum simulation for granular silo discharge flow using a regularized non-local ρ(I) model
Cheng-Chuan Lin, Fu-Ling Yang

2312 MercuryDPM: Fast, flexible, particle simulations
Thomas Weinhart, Anthony R. Thornton

2353 Multiscale modelling of granular materials – Calibration of discrete particle models
Anthony Thornton, Mohammed Reza Vegal, Raquel Weinhard-Mejia, Donna Fitzsimmons, Thomas Weinhart

2549 NextGen Chrono::GPU: An Open-Source Multi-GPU DEM Simulator with Complex Geometry Support
Ruo Chun Zhang, Lun Jing Fang, Dan Negrut

2723 A Gaussian process based Bayesian optimization calibration approach and its application in terradynamics
Wei Hu, Zhen Hao Zhou, Radu Serban, Dan Negrut

3140 Lethe: Open-source high-order unresolved and resolved CFD-DEM based on the deal.II library
Bruno Blag, Tobi El Gesita, Latcha Barbeau, Victor Oliveira Ferreira, Shahab Golshan

MS0605 COMPLEX FLUID FLOWS IN ENGINEERING: MODELING, SIMULATION AND OPTIMIZATION

532 Simulation of a droplet impact in a thin film using a phase-field model
Malú Grave, Alvaro Coutinho

574 An Arbitrary Lagrangian-Eulerian Algorithm for Multiphase non-Newtonian Fluid Flows
Cagatay Guventurk, Mehmet Sahin

881 Computational models and experimental studies of mold filling in thin channels with yield stress fluids
Rekha Rao, Jushua Mcconnell, Anne Gilllet, Weston Ortiz, Pania Newell

1018 Validation of Laminar Stirred Mixing CFD Models using Positron Emission Particle Tracking
Roberto Hart-Villamil, Andrew Ingram, Kit Windows-Yule

1145 Computational Analysis of Shear-thinning Coating flows
Jaewook Nam

1381 Novel Space-Time Finite Elements for Fluid-Based Processes
Marek Behr

1413 Efficient glow discharge solver for sensitivity analysis
Violeta Karyofyll, Todd Oliver, Laxminarayan R. Raja, Robert Moser

1639 Numerical simulation of polymeric mixing process with non-conforming methods in OpenFOAM
Nicola Parolini, Giorgio Negrini, Marco Verani, Daniele Cerroni

2660 RANS Model Assessment for Curved Turbulent Shear Layers and Retro-propulsive Flows
Kristen Matsuno, Sanjiva Lelle

3406 A mesh-insensitive finite volume solver: from compressible to incompressible flows
Matteo Giacomini, Rubén Sevilla, Antonio Huerta

MS0607 Multiphase flows

396 The influence of flow conditions on mass transfer in lyophilization in a vial
Majid Hriberšek, Blaz Kamenik, Jure Ravnik, Matej Zadračev

524 Geometry Influence of Particles Depositing in Realistic Human Lung Replicas
Jana Wedel, Mitja Straki, Jure Ravnik, Majda Hriberšek, Paul Steinmann

2516 Numerical Investigation of Rising Bubbly Flows in Slightly Inclined Vertical Pipe Filled with Power-law Fluid
Yiwei Liu, Kazuya Suzuki, Shu Takagi

2644 Numerical Simulations of Hydrogen Production in Alkaline Water Electrolyzers
Morgan Kerhousant, Thomas Abadie, Raj Venuturumilli, Andre Nicolle, Omar Matar

3022 Numerical Analysis of Interaction between Multiphase Flow and Rain Chain
Minoru Shirakazi, Takaaki Nagaishi, Keitaro Hanada

3376 Pore-Scale Mechanisms Control Fluid Invasion during Multiphase Flow in Regular Porous Media
Zhongzheng Wang, Jean-Michel Pereira, Emilie Sauret, Yi Xiang Gan

MS0608 Fluid Dynamical Laws and Transport Phenomena for Complex Dynamical Systems

2605 Estimation of the state of matter in young impact craters on the Moon based on the orbital observations
Michael Shpekina, Ricardo Ferreyra

2661 Transport of logarithmic potentials versus process duration
Ricardo Tomás Ferreyra

MS0609 MODELLING OF ATOMIZATION, BREAKUP AND FRAGMENTATION OF FLUIDS

566 Dynamics and Modelling of Spin-affected Droplet Collision
Chengming He, Peng Zhang

607 Detailed simulations of nozzle-dependent primary atomization in coaxial atomizers *Keynote Lecture*
Fabian Frode, Temistocle Grenga, Heinz Pitsch

1164 Front-Tracking approaches for the modelling of breakup and coalescence
Paul Regnault, Stéphane Vincent, Eric Chénier

1306 Manifold death: the implementation of controlled topological changes in thin sheets by the signature method
Leonardo Chirco, Jacob Maarek, Stéphane Popinet, Stéphane Zaleski

1620 Experimental investigation on the spreading progress after droplets impacting on to a vertical vibrating plate at low frequency
Meng Zhu, Yikai Li, Ziming Yang, Chenghan Sun

1867 Multi-physics and Machine Learning Framework for Predicting Air Entrapment During Drop Impact onto Solid Hydrophobic Surfaces
Subhayan Halder, Rafael Granda, Abhilash Sankaran, Vitaliy Yurkiv, Alexander Yarin, Farzad Mashayek
73

MS0610 Modeling and Simulation of Computational Multi-phase Flows

399 A Preliminary Numerical Simulation for Flows through Oblique Detonation Engines based on Less Dissipative Schemes and Machine Learning Yi-Jhen Wu, Chi-Heng Ting, Yang-Yao Niu

1511 An accurate and efficient scheme to capture the sharp interface in high-speed multiphase flow Te-Yao Chou, Yang-Yao Niu, Yi-Ju Chou

2899 A Time Consistent Method by Preconditioning of the Diffusion Term for Unsteady Gas-Liquid Two-Phase Flows Tianmu Zhao, Byeong-Cheon Kim

3192 Numerical simulation of two phase flow using general pressure equation Wan-Cheng Lin, Chao-An Lin

MS0611 Multiphase flows with non-Newtonian materials: simulation, experiment, and machine learning

2390 Folding Instabilities in Viscoplastic Sheets Anselmo Pereira, Romain Castellani, Arthur Hochede, Louis Simon, Elie Hachem, Rudy Valette

MS0612 Collisional Kinetic modeling in classical and plasma dynamics: numerical methods and non-linear analysis

948 Numerical Analysis of a Slow Rarefied Gas Flow past a Circular Disk Takuma Tomta, Satoshi Taguchi, Tetsuro Tsuji

2884 Extending the BGK model: velocity dependent collision frequency and quantum description Marlies Piner

3199 On scientific machine learning of kinetic theory and fluid dynamics Tianbai Xiao, Martin Frank

3231 On the kinetic model for a polyatomic gas: the Cauchy problem and moment equations Milana Pavic-Colic

3241 A Consistent, Explicit and Accessible Boltzmann Collision Operator for Polyatomic Gases Manuel Tortilhon

3344 Quasilinear Diffusion of magnetized fast electrons in a mean field of quasi-particle wave packets Kun Huang, Michael Abdelmalik, Irene M. Gamba

3345 Convergence and Error Estimates for the Conservative Spectral Method for Fokker-Planck-Landau Equations Irene M. Gamba, Clark Pennie

3371 Electric-Field-Driven Ion Emission from the Free Surface of Room Temperature Ionic Liquids Fei Zhang, Xikai Jiang, Gaoqeng Chen, Yadong He, Guoqing Hu, Rui Qiao

801 A Discrete Exterior Calculus Based Framework for CFD Pankaj Jagad, Bhargav Mantravadi, Minmiao Wang, Abdullah AbuKhejeh, Ravi Samtaney

2311 Large Eddy Simulation and Hybrid RANS/LES of Heat transfer for Staggered Pin-Fin Matrix Byeong-Cheon Kim, Kyoungsik Chang

2509 Multi-Region and Multi-Component Thermal Fluid Analysis of Hydrothermal Oxidative Decomposition Reactor Hirohiko Kurumae, Tokihiro Sugimoto, Masahide Matsumoro, Nobuhisa Watanabe

2640 Numerical Study of the Heat Transfer Process in a Wind Tank Rafael Marulanda, Omar Lopez

2924 Optimal Cooling Design of Gamma-ray Converter with Venturi Structure Based on Multi-physics Analysis Hirotto Yamamoto, Tetsuo Oya

3310 Transient cooling of reactor vessel wall during LOCA Gabriel Gall, Vladimír Kutíč, Juraj Paulech, Vladimír Goga, Michal Uličný
MS0701 Numerical techniques for the simulation and model reduction of complex physical systems

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>361</td>
<td>Atomistic origins of continuum dislocation dynamics</td>
<td>Patrick Van Meurs, Thomas Hudson, Mark Peletier</td>
</tr>
<tr>
<td>362</td>
<td>Optimal renormalization of multiscale systems</td>
<td>Brek Meuris, Jacob Price, Madelyn Shapiro, Panos Stinis</td>
</tr>
<tr>
<td>401</td>
<td>Discretizing Atomistic Dynamics with Markov Renewal Processes</td>
<td>Danny Perez</td>
</tr>
<tr>
<td>416</td>
<td>Accurate and Robust Splitting Methods for the Generalized Langevin Equation with a Positive Prony Series Memory Kernel</td>
<td>Manh Hong Duong, Xiaocheng Shang</td>
</tr>
<tr>
<td>549</td>
<td>Grassmann Extrapolation of Density Matrices for Born–Oppenheimer Molecular Dynamics</td>
<td>Etienne Polack, Genevieve Dusson, Benjamin Stamm, Filippo Lipparrini</td>
</tr>
<tr>
<td>640</td>
<td>Coarse-graining of Markov chains</td>
<td>Upanshu Sharma, Bastian Hilder</td>
</tr>
<tr>
<td>763</td>
<td>Solving High-Dimensional Eigenvalue PDEs using Artificial Neural Networks and its Application in Understanding Metastable Diffusion Processes on Large Timescales</td>
<td>Wei Zhang, Tiejun Li, Christof Schütte</td>
</tr>
<tr>
<td>956</td>
<td>Adaptive Parareal Algorithms for Molecular Dynamics Simulations</td>
<td>Frederic Legoll</td>
</tr>
<tr>
<td>1382</td>
<td>Large Deviations for Model Coarse-graining: Metastable Atmospheric Jets</td>
<td>Tobias Grafke, Nayef Shkeir</td>
</tr>
<tr>
<td>1409</td>
<td>Data-based model reduction and Mori-Zwanzig formalism for random dynamical systems</td>
<td>Kevin Lin, Fei Lu</td>
</tr>
<tr>
<td>1603</td>
<td>Adaptive multigrid strategy for large-scale molecular mechanics optimization</td>
<td>Mingjie Liao, Yangshuai Wang, Kejie Fu, Jianjun Chen, Lei Zhang</td>
</tr>
<tr>
<td>1714</td>
<td>Tensor-valued atomic cluster expansion for inference of dynamical systems</td>
<td>Matthias Sach, Christoph Ortner</td>
</tr>
<tr>
<td>2424</td>
<td>Accelerating Structural and Fracture Mechanics Simulations with Localised Phenomena through Matrix Compression and Sub-Structuring</td>
<td>Konstantinos Tatios, Konstantinos Agathos, Konstantinos Vlachas, Eleni Chatzi</td>
</tr>
</tbody>
</table>

MS0702 Isogeometric Methods

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>828</td>
<td>Efficient and Fast Mesh Adaptation Method on more General Geometries using Isogeometric Analysis</td>
<td>Mustapha Bahari, Ratnani Ahmed</td>
</tr>
<tr>
<td>1404</td>
<td>Auxiliary Splines Space Preconditioning for B-Splines Finite Elements: the case of H(curl,Ω)-elliptic problems</td>
<td>Abdeladim El Akri, Khalide Jbilou, Ahmed Ratnani</td>
</tr>
</tbody>
</table>

MS0703 Developments and Applications of Discrete Element Method in Modelling and Simulation of Granular Systems

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>455</td>
<td>Modelling of keyhole dynamics and melt pool flow in selective laser melting additive manufacturing</td>
<td>Erlan Li</td>
</tr>
<tr>
<td>738</td>
<td>Calibration and Validation of DEM and CFD-DEM Models of Industry-Relevant Systems using Evolutionary Optimisation and Positron Emission Particle Tracking</td>
<td>Kit Windows-yule</td>
</tr>
<tr>
<td>790</td>
<td>Numerical analysis of debris-like flow using an extended CFD-DEM method based on micropolar fluids</td>
<td>Xihua Chu</td>
</tr>
<tr>
<td>1111</td>
<td>A new numerical iterative method for calculating the load capacity of truss constructions</td>
<td>Vladimir Krizac, Tibor Rodiger, Drazen Hranj, Jelena Krizac</td>
</tr>
<tr>
<td>1217</td>
<td>Study on rolling resistance model of discrete element method based on material elastic hysteresis theory</td>
<td>Zhengguo Gao, Yajun Zhang, Jun Wang, Becaye Cissokho Ndiaye</td>
</tr>
<tr>
<td>2304</td>
<td>On modeling of large particle size variations in DEM-CFD simulation</td>
<td>Daisuke Yamada, Yuki Mori, Mikko Sakai</td>
</tr>
</tbody>
</table>

MS0704 Stabilized, Multiscale and Multiphysics Methods

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1484</td>
<td>Variational-Multiscale Discontinuous-Galerkin Method: Application to Additive Manufacturing</td>
<td>Arif Masud, Ignasius Wijaya</td>
</tr>
<tr>
<td>1727</td>
<td>Adaptive Computations for Biot System Based on A Posteriori Error Estimate with Mixed Finite Element Method for Flow</td>
<td>Vivette Girault, Mary F. Wheeler, Hanyu Li</td>
</tr>
<tr>
<td>2375</td>
<td>Multiscale and Multiphysics modeling of Cardiac Hemodynamics</td>
<td>Alberto Zingaro, Luca Dede, Alfio Quarteroni</td>
</tr>
<tr>
<td>2416</td>
<td>Efficient Implicit-Explicit Time Integration for Multiscale Simulations Using Hybridized Finite Element Methods</td>
<td>Bryan Reuter, Timothy Wildey</td>
</tr>
</tbody>
</table>
Streamline-Upwind Petrov-Galerkin formulation for the analysis of hypersonic flows in thermal non-equilibrium
David Codoni, Craig Johansen, Artem Korobenko

Simple Models for Linear and Singular Losses for Periodic Flow
Guillermo Hauke

Positive-Definiteness of the Coarse Matrix in BDD-DIAG of a Perturbed Magnetostatic Problem
Hiroshi Kanayama, Masao Ogino, Shin-ichiro Sugimoto, Kaworu Yodo

BDD Preconditioner for A Diagonal-scaled Schur Complement System
MASAO Ogino

Implementation of Balancing Domain Decomposition Method for Inactive Elements and Its Applications
Yasunori Yusa, Hiroaki Kobayashi, Yuma Murakami, Hiroshi Okada

Numerical Integration Technique Using Background Cells for Weak Form Constraint Condition of Dual Lagrange Multiplier Method
Yu-ki Yang, Tomoshiti Miyamura

FE Analysis of Numerical Human Body Model with 100 Million DOFs in High-Frequency Electromagnetic Field - Heat Conduction Coupled Problem
Shin-ichiro Sugimoto, Amane Takei, Masao Ogino

High-performance Parallel Smoother Particle Hydrodynamics Solver Based on Multi-section Division and Hashed Tree Method
Zhuhui Wang, Genciao Yang, Qinghe Yao

A neural network-based SIMPLE algorithm for large-scale fluid simulation
Zichao Jiang, Junyang Jiang, Qinghe Yao, Gengchao Yang

Derivation and Validation of Compressible PTT Viscoplastic Fluid Model
Lan Zhang, Yuhui Chen, Qinghe Yao

A fluid-thermal multi-physical field simulation model for proton exchange membrane fuel cell
Yuxuan Luo, Junyi Chen, Trevor Hocksun Kwan, Qinghe Yao

Adaptive Order WENO Reconstructions Based on Radial Basis Functions for Solving Conservation Laws
Chieh Sen Huang, Todd Arbogast

A Coupled Meshfree and Infinite Element Approach for Non-Fourier Heat Conduction Problems
Kuan-Chung Lin

A Stabilized Galerkin Mixed Formulation for Nearly Incompressible Material
Chia-Lien Chao, Tsung-Hui Huang

A Bending Consistent Meshfree Formulation for Reissner-Mindlin Plates
Yen-Ling Wei, Tsung-Hui Huang

Solving large-scale engineering problems by ghost point method and domain decomposition method
Chuang Lin Chu, Chia Ming Fan, Chung Yi Lin

Iso-geometric Analysis Method for Thermal Fatigue of Wafer Level Chip Scale Package
Wang Hao-ju, Guan Pai-Chen

A real-time data-driven modelling frawork for control and simulate the behavior of industrial controllers
*Keynote Lecture
Chady Ghatnas, Abel Sancarlos, Victor Champaney, Francisco Chinesta, Joaquim Da Silva

Complexity Reduction of Geometrically Parametrised Turbulent Flows via Reduced Order Models.
Vassileos Tsoiaklis, Trond Kvamsdal, Azil Rasheed, Eivind Fonn, Harald van Brummelen

Finite Element Method Based Neural Network for Forward and Inverse problems
Rishith Ellath Meethal, Mohamed Khalil, Birgit Obst, Roland Wüchner

Thermodynamics-Informed Reinforcement Learning of Fluid Dynamics from Observation
*Keynote Lecture
Beatriz Moya, Alberto Badias, David Gonzalez, Francisco Chinesta, Elias Cueto

Surrogate modeling with proper orthogonal decomposition for predicting electrochemical potential distributions in SOFC
Masami Sato, Mayu Muramatsu, Kenta Tozato, Shuji Moriguchi, Tatsuya Kawada, Kenjiro Terada

On the GENERIC formalism and its role in learning physics from data
Beatriz Moya, Quercus Hernandez, Alberto Badias, David Gonzalez, Francisco Chinesta, Elias Cueto

Learning physics with metriplectic and geometric biases
Quercus Hernandez, Alberto Badias, David Gonzalez, Francisco Chinesta, Elias Cueto

Extraction of Implicit Knowledge and Optimization
Olivier Ally, David Muñoz, Francisco Chinesta, Enrique Nadal, Juan José Rodríguez

MPS-WCMPS coupled method for bubble dynamic with density and pressure discontinuity
Zidi Wang, Tomoyuki Sugiyama

Modelling of Interface Tension using Multi-resolution MPS Method with Polygon Boundary
Jing Zhang, Jinbiao Xiong

On the bound solution property of the Node-based Smoothed Point Interpolation Methods (NSPIMs) in coupled problems of porous media
*Keynote Lecture
Arman Khoshghalb, Ashkan Shafee

Particle Method Simulation of the Eutectic Liquid Formation in Sn-Bi system using PHALSER Code
Kenta Inagaki, Shota Ueda, Masahiro Kondo
A coupled 3D isogeometric/least-square MPS approach for modeling fluid–structure interactions *Keynote Lecture*

Wei Gao, Takuya Matsunaga, Guangtuo Duan, Seiichi Koshizuka

Moving Surface Mesh-incorporated Particle Method Applied to Viscoelastic Fluids

Hokuto Ando, Yohei Fukuzawa, Ibuki Kaji, Takuya Matsunaga, Seiichi Koshizuka

Development of snow accretion analysis method for railway vehicles

Kohei Musto, Koji Nakade, Yasushi Kamiya

Development of an Interface Tension Model of MPS Method to Avoid Particle Clumping of Inner-Particles

Takanari Fukuda, Akifumi Yamaji, Xin Li

Numerical investigation of Particle Deposition on Substrates in Cold Spraying by SPH Method

Zhen Dai, Fei Xu, Jiayi Wang, Lu Wang

Development of Parallel Parametric Analysis System Using Coupling-Matrix-Free Iterative S-version FEM for Design of Structure with a Hole

Hiroki Suwa, Yasunori Yusa

Impulse-Based DEM for Boosting Simulations of Particulate Materials

Kazuaki Shimbo, Hiroyuki Ohmura, Mitsuteru Asai, Naoto Mitsume

A Multiphase Axisymmetric Model of Moving Particle Semi-implicit Method

Jincheng Gao, Gen Li, Junjie Yan

Application of Moving Particle Hydrodynamics Method to Fluid Lubrication Problems in Line Contact

Hideyuki Negishi, Masahiro Kondo, Shingo Obara, Ryoichi Kurose

SPH Modelling of Internal Erosion in Porous Media

Guodong Ma, Ha Bui, Yanjian Lian, Khoa Tran, Giang Nguyen

The Meaning of Moving Particle Simulation for Gas Flow in Offactory Display

Motofumi Hattori, Yohei SETA, Yuchi BANNAI

Large-deformation analysis of saturated soils using extended B-spline-based implicit material point method

Yuya Yamaguchi, Shuji Moriguchi, Kenjiro Terada

New Spar Type Floating Wind Power Plant Behavior Simulation by SPH Method

Seiya Hagihara, Naofumi Terada, Satoyuki Tanaka, Shinya Taketomi, Yuchi Tadano

Analysis on molten material spreading behavior with Moving Particle Hydrodynamics method

Ryo Yokoyama

Extended B-spline-based implicit material point method enhanced by F-bar projection method

Riichi Sugai, Yuya Yamaguchi, Shuji Moriguchi, Kenjiro Terada

Soft Elasto-Hydrodynamic Lubrication Simulation by a Multi-Resolution Particle Method

Daisuke Yamada, Tetsuro Nominuma, Kyuya Matsumoto, Kyuya Shibata, Hideyo Negishi, Shingo Obara

Numerical Analysis of Wave Pressure Acting on a Ship by a Multi-Resolution Particle Method

Sotaro Oda

Development of elastic structure model and fluid-solid coupled model in MPS method

Qinghang Cai

Multiple solvers for implicit temperature calculation of plate heat conduction with MPS method

Sijun Li, Xinkun Xiao, Qinghang Cai, Yubao Zhong, Ronghua Chen, Kaixun Guo, Wenyi Tian, Guanghui Su, Suizheng Qiu

A class of Laplacian and mixed derivative models in the SPH framework *Keynote Lecture*

Mitsuteru Asai, Shujirou Fujikawa

Tsunami Simulation by a 2D and 3D Coupled Multi-Resolution Particle Method

Toshiki Imata, Kazuya Shibata, Harufumi Sekine, Daisuke Yamada, Kenya Takahashi, Hiroshi Sanuki, Takehiko Nishihata

A Particle Method for Strongly Coupled Simulation of Incompressible Fluid and Rigid Bodies with Velocity-Based Constraints

Shugo Miyamoto, Seiichi Koshizuka

Moving Particle Semi-implicit/Simulation Method with Bottom Boundary-Fitted Coordinate Transformation

Naoto Mitsu, Kyuya Matsumoto, Yusuke Imoto, Mitsuteru Asai

Addition/Deletion-based Multi-resolution LSMPGS with Multi-time-stepping

Axel Soedersten, Takuya Matsunaga, Seiichi Koshizuka, Tomoyuki Hoso, Kenta Mitsu, Taisuke Sugii, Eiji Ishii

Better Vertical Stirred Milling to Help Fight the Climate Crisis

Daniel Rheym, Kit Windows-Yule, Andrew Ingram

A GPU-accelerated SPH method for modeling wave breaking problems

Huazhang Zhang, Moubin Liu

Numerical modelling of concrete structures under the impact and blast loading using the smoothed particle hydrodynamics (SPH) method

Jiahao Liu, Zhilang Zhang, Moubin Liu

A novel Riemann solver based FPM for solving weakly compressible flows

Fan Zhang

Modelling Particle Entrainment and Spattering in Powder-based Laser Additive Manufacturing

Zekun Wang, Moubin Liu

A Weakly Compressible SPH Model for Modeling Poroelastic FSI Problems *Keynote Lecture*

Danlei Feng, Insa Neuwiler, Moubin Liu

Coupled Lattice Boltzmann-Discrete Element method for particles settling in a Bingham fluid

Da Hui, Mou Bin Liu

Construction of a Meshfree Particle Method based on Fulfillment of Requirements on Spatial Discretization Schemes *Keynote Lecture*

Christian Weißendels, Tobias Bode, Peter Wriggers
MS0711 Smoothed Finite Element Methods and Other Advanced FEMs

460 A cell-based smoothed finite element method for dynamic analysis of rotating plates
Chaofan Du

619 A Multiscale Gradient Smoothing Method for Elliptic Problems with Heterogeneous Coefficients
Chaeamin Lee, Minam Moon, Jongho Park

1243 An adaptive edge-based smoothed finite element method (ES-FEM) for phase-field modeling of hyperelastic materials
Fucheng Tian

2359 Bi-directional evolutionary structural optimization of structures with gradient elasticity based on smoothed finite element method
Changkye Lee, Sundararajan Natarajan, Haojie Lian, Jung-Jae Yee

2967 Implementation of the Smoothed Finite Element Method by the Complex-step Derivative Approximation
Masaki Fujikawa, Tomoyuki Yara

MS0712 Boundary Element Methods and Mesh Reduction Methods

1970 Finite Line Method for Solving Thermal Mechanical Problems
Xiao-Wei Gao

MS0713 Advances and Applications of Meshfree and Particle Methods

563 A viscosity enhanced peridynamic model for shock wave problems
Jinggao Zhu, Xiaodan Ren

712 Phase-field Implicit Material Point Method for Finite Deformation Elastoplastic Fracture Modelling of Geomaterials
Zhiquang Hu

783 A Locking-Free Variational Multiscale Meshfree Formulation for Reissner-Mindlin Plate Problems
*Keynote Lecture
Tan-Hui Huang, Yen-Ling Wei

890 Particle-informed FEM: A method for accurately simulating the shock phenomenon of fiber reinforced composites
Hao Su, Yu-Chen Su, Zhen Chen, Yan Liu

1056 Temporal Stability of Collocation, Petrov-Galerkin and Other Non-symmetric Method in Elastodynamics and an Energy Conserving Time Integration
Jiakui Wang, Michael Hillman

1581 An Immersed RKPM with Transformed Interface Method for Modelling Heterogeneous Materials
Ryan Schlinkman, J.S. Chen

1616 Investigation of Shear-Band Evolution with Concurrent Multiscale Simulation
Yu-chen Su, Zhen Chen

1677 Application of Meshless Method in Underwater Acoustics to Solve the Back Calculation of Cavitation Tunnel Sound Source
Lu Te-chuan, Guan Pai-Chen

1711 FFT-accelerated Computation for Reproducing Kernel Particle Method
Savash Jafarzadeh, Michael Hillman

1719 Nodally-integrated RKPM for modeling deposition processes in three-dimensional printing
*Keynote Lecture
Michael Hillman, Kuan Chung Lin, Feihong Liu

2239 A Couple Finite Volume and Material Point Method for Two-Phase Simulation of Liquid–Sediment and Gas–Sediment Mixtures
Aaron Baumgarten, Benjamin Couchman, Ken Kamrin

2910 A Variationally Consistent Material Point Method for Large Deformation Problems
Cameron Rodriguez, Tsung-Hui Huang

MS0714 Meshfree and Other Advanced Numerical Methods for Engineering and Applied Mathematical Problems

511 A highly efficient and accurate Lagrangian-Eulerian stabilized collocation method (LESCM) for the fluid-structure interaction problems with free surface
*Keynote Lecture
Lihua Wang

709 LRBF Collocation Method for Rayleigh-Taylor Instability Under Different Gravity
Yulin Huang, Guannan Wang

1214 Dynamic Phase Field Modelling of Magnetic Vortex Evolution under Elastic Wave
Jiajun Sun, Jie Wang

1221 Physics-informed-based collocation solver
Yuqiu Fu, Qiang Xi, Wenzhi Xu, Zhuochoan Tang

MS0715 Multi-scale numerical methods for non-linear solids problems

1034 Multilevel Adaptive Mesh Refinement with controlled accuracy for nonlinear quasi-static mechanics
Daria Koliesnikova, ISABELLE Ramiege, Frédéric Lebon

2054 Evaluation of the effect of molecular chain structure and crystallinity on the mechanical properties of Polyamide by the Finite Element Method of modified MCN model
Toyoshi Yoshida, Tomoya Nakane, Makoto Uchida, Yoshifusa Kaneko

2225 On the modeling of non-linear imperfect interfaces including plasticity and stochastics effects
Caroline Bauzet, Giovanna Bonfanti, Serge Dumont, Frédéric Lebon

MS0716 Model order reduction for parametrized continuum mechanics systems

917 Operator inference to construct low-dimensional models for incompressible flows
Peter Benner, Pawan Goyal, Jan Helland, Igor Pontes Duff

1699 Multi-component Reduced Order Modeling Framework for Rocket Combustion Engines
Cheng Huang, Karthik Duraisamy, Charles Merkle
Parameterized neural ordinary differential equations: applications to computational physics problems
Kookjin Lee, Eric Parish

Constructing Reduced Order Model for Two Phase Flow using Dynamic Mode Decomposition
Tomoyuki Hosaka, Masanichi Nakamura, Taisuke Sugii, Eiji Ishii

Reduced Order Modeling for modular anisotropic Structures based on Proper Orthogonal Decomposition and Mesh Tying
Stephan Ritzert, Domen Macek, Jaan Simon, Stefanie Reese

Projection-based Model Order Reduction of Embedded Boundary Models
Noah Youkulis, Charbel Farhat

Nearest-Neighbor Bases for Efficient Model Reduction of Parameterized Nonlinear Dynamical Systems
Spenser Anderson, Charbel Farhat

Model Reduction for Aerodynamics: High-Dimensional Problems and Shape Optimization
Benjamin Gibson, Adrian Humphry, Masayuki Yano

Piecewise polynomial approximation manifold for the model reduction of nonlinear convection-dominated problems
Joshua Barnett, Charbel Farhat

Nonlinear Projection-Based Model Order Reduction in the Presence of Adaptive Mesh Refinement
Clayton Little

Nonlinear reduced model for parametric/random partial differential equations
Andrea Bonito, Albert Cohen, Ronald DeVore, Diane Guignard, Peter Jantsch, Olga Mula, Guergana Petrova

ROM Closures and Stabilizations for Under-Resolved Turbulent Flows
Traian Iliescu

A weakly-invasive LATIN-PGD method for non-linear problems
David Néron, Ronan Scanff, Pierre Ladevèze, Philippe Barabinot

Reduced Order Methods in Computational Fluid Dynamics: state of the art and perspectives
Gianluigi Rozza

A multi-fidelity ensemble Kalman filter with hyperreduced reduced-order models
Geoff Donoghue, Masayuki Yano

Empirical Quadrature Procedure with Constraint Reduction for Reduced Order Modeling of Large Scale Problems
Adrian Humphry

An adaptive rotated entropy stable scheme for the ideal MHD equation
Supei Zheng, Mengqing Zhai, Jianhu Feng, Xiaohan Cheng

The finite element numerical investigation of gas entrainment phenomenon in non-isothermal polymer filling process *Keynote Lecture
Puyang Gao

A Computational Approach To The Effective Viscosity Of Non-Newtonian Fiber Suspensions
Benedikt Stehr, Daniel Wicht, Matti Schneider, Thomas Böhlike

Efficient and Decoupled Schemes with Unconditional Energy Stability for the Block Copolymer Model in Copolymer/Homopolymer Mixtures
Qi Li

A Stable and Efficient finite element scheme for simulating Viscoelastic fluid flows
Yong Chai

Mengoa Ma

3D Transient Response of Layered Soils with Local Inhomogeneities
Julian Freisinger, Gerhard Muller

Optimal Local Truncation Error Method for Solution of PDEs on Irregular Domains and Interfaces with Optimal Accuracy and Unfitted Cartesian Meshes *Keynote Lecture
Alexander Idesman

Filtering Spurious Eigenmodes in Electromagnetic Cavities Discretized by Energy-Orthogonal Twenty-Nodes Hexahedral Finite Elements
Francisco Brito

Numerical Simulation Of Ground Motion Field Effect Using Scaled Boundary Finite Element Method
Wei Wang, Chengbin Du

Improvements in Semi-Implicit Integration Factor Method
Gourav Kumbhojkar, Amlan Barua, Amar Gaonkar

Numerical analyses on HLB-induced blast wave and jet impingement
Tae-Yong Kim, Yoon-Suk Chang

Mixed Time Integrator for Finite Element Analysis of Wave Propagation in Nearly Incompressible Elasticity
Takahiro Yamada

Application of the Modified Formal Variational Formulation to the Burgers’ Equation
Momoko Otake, Kenji Obata, Linyu Peng

Accuracy Analysis of Second-order-type Linear Multistep Time Integration Methods for Structural Dynamics
Jie Zhang

An improved Brownian dynamics for chromatin in human cells
Yuki Takahashi, Yukitaka Ishimoto

An Energetic Boundary Element Method approach for Wavefield Modelling *Keynote Lecture
Luca Desiderio, Alessandra Aimi, Chiara Guardasoni
Hybrid 3D-2D Finite Element Modeling for Elastodynamics
Ron Efrati, Dan Givoli

Shape Identification of Scatterers Using a Time-Dependent adjoint Method
Amit Sayag, Dan Givoli

Direct Method-based Gear Shakedown Analysis Considering Kinematic Hardening
Lizhe Wang, Min Chen, Fuyuan Liu

Virtual element method for steady generalized membrane shell model
Xiaoqin Shen

Hybrid High-Order methods for the fourth-order PDEs
Zhaonan Dong, Alexandre Ern

Virtual Element Method for Elliptic Hemivariational Inequalities arising in Contact Mechanics
Fei Wang, Bangmin Wu, Weimin Han

High-order numerical methods for compressible flow and turbulence
Lin Fu, Zhe Ji

Solution property preserving method for compressible turbulence simulation
Zhenhua Jiang

A New TVD Scheme Based on BVD Principle
Yusuke Majima, Hiro Wakimura, Feng Xiao

Modelling and Simulation of Macroscopic Flows of Dense Suspensions
Luca Santelli, Giulio Giusteri, Ryohei Seto

Analysis and numerical simulations of viscoelastic phase separation
Maria Lukacova, Aaron Brunk, Burkhard Dunweg

Numerical investigation of binary collisions of non-Newtonian droplets
Cassio Oishi, Roney Thompson, Hugo França

Second-order finite difference approximations of the upper-convected time derivative
Hirofumi Notsu, Debora O. Medeiros, Cassio M. Oishi

Integrated Analysis of Operating Engine and Airframe for High-Fidelity Wing Load Estimation
Kazuhisa Chiba, Yoshinori Oba

Development of structural analysis code based on FEM for aircraft design simulator using CFRP and CFRPT
Toshio Nagashima

New calculation scheme for compressible Euler equation
Takashi Nakazawa, Taku Nonomura

Multi-objective design exploration approach for aircraft wing design with carbon fiber reinforced plastics
Shugo Date, Yoshiaki Abe, Tomonaga Okabe

High-Fidelity Wall-Modeled LES around Full Aircraft Configuration near Stall Condition
Hiroyuki Asada, Soshi Kawai

High Resolution Patient-specific Blood Flow Simulations with High Performance Computing
Rongliang Chen

The Effective Stiffness of 3-Dimensional Heterogenous Structures Derived by 1-Dimensional Finite Element Meshes
Johannes Gebert, Marc-Philip Schmid, Benjamin Schnabel, Ralf Schneider, Michael M. Resch

A nonlinear elimination preconditioned inexact Newton method for blood flow problems in human artery with stenosis
Li Luo, Xiao-Chuan Cai

Classification of in Vivo Mice Magnetic Resonance Imaging for Early Detection of Liver Fibrosis by Machine Learning Technique
W-Zhen Su, Feng-Nan Hwang, Dennis Hwang

Computational Fluid Dynamics in Intracranial Atherosclerotic Disease: The Clinical Implications
Xinyi Leng

Block smoothers within geometric multigrid methods for the solution of the Stokes equations
Lisa Claus

A scalable and robust p-multigrid preconditioner with a vertex-star relaxation for high-order FEM
Pablo Brubeck, Patrick Farrell

A Matrix-Free Approach for Smoothed Aggregation Algebraic Multigrid
Graham Harper

Non-invasive Regional Multigrid for Semi-structured Grids
Peter Chin, Matthias Mayr, Luc Berger-Vergiat, Raymond Tuminaro

Three-level Overlapping Schwarz Methods on the Theta Supercomputer
Oliver Rheinbach, Alexander Heinlein, Friederike Röver

Analysis of multigrid methods for systems of PDEs using structured matrices
Matthias Bolten

Multilevel Methods for Constrained and Non-linear System
Rolf Krause, Aleina Kopaničáková, Hardik Kohari, Gabriele Rovi, Patrick Zulian, Martin Weiser
MS0728 Efficiency and reliability in biomedical modeling: computational and mathematical advances

MS0729 Advances in High-Order Methods for Computational Fluid Dynamics

MS0728

3404 Physics-based block preconditioning for beam/solid interaction
Max Firmbach, Alexander Popp, Matthias Mayr

MS0729

409 The Importance of Temporal Adaptation in High-Order Unsteady Simulations
Krzysztof Fidkowski

378 Bump Attractors and Waves in Networks of Integrate-and-Fire Neurons
Daniele Avitabile, Joshua Davis, Kyle Wedgwood

864 High-Order Hybridizable Discontinuous Galerkin Methods for Computational Fluid Dynamics with Applications to Multiphysics Problems
Andrea La Spina, Jacob Fish

526 Homological features of volumetric images
Shizuo Kaji

1524 High-Order Implicit Shock Tracking for Compressible Viscous Flows *Keynote Lecture
Tianci Huang, Matthew Zahr

527 Bayesian Model Selection of Partial Differential Equations for Pattern Formation
Natuuki Yoshinaga, Satoru Tokuda

2642 A Further Extended Range of Stable Flux Reconstruction Schemes in One Dimension, Triangles, and Polygons
Will Trojak, Peter Vincent

915 Synthetic Q-Space Learning for Diffusion MRI Parameter Inference
Yoshitaka Masutani

2582 Uncertainty Related to the Use of Doppler Flow Waveforms as Inflow Boundary Conditions in Coronary Arteries Blood Flow Simulations
Maurizio Lodì Rizzini, Alessandro Candreva, Diego Gallo, Emanuele Gallinoto, Carlos Collet, Bernard de Bruyne, Claudio Chiara, Umberto Morbiducci

1072 Well-posedness of One-dimensional Models of Blood Flow in Arteries
Norikazu Saito, Yutaro Himeki

1156 Finite element analysis for a generalized Robin boundary value problem in a smooth domain
Takahito Kashiwabara

1619 Sensitivity analysis of a partial hepatectomy hemodynamics model
Lorenzo Sala, Nicolas Golse, Alexandre Joosten, Eric Vibert, Irene Vignon-Clementel

1702 Multiscale design and topology optimization of architected implants for bone replacement *Keynote Lecture
Damiano Pasini

1737 Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning Models
Andrew Blanchard, Pei Zhang, Debindhu Bhowmik, Kshitij Mehta, John Gounley, Samuel Temple Reese, Stephen Irl, Massimiliano Lupo Pasini

2317 Implementation of a Multi-Scale Model for Simulating Blood Flows in Circulatory Network *Keynote Lecture
Jawei Liu, Hiroshi Suito

2431 Computational Blood Flow Analysis of Arteriovenous Fistulas for Hemodialysis Patients
Surabhi Rathore, Hiroshi Suito, Hirobonu Sugiyama

2582 On Numerical Instabilities of High-Order Shock-Capturing schemes for strong shocks
Wei Jia, Weijie Ren, Zhiyong Zhao, Zhengyu Tian

1049 Structure-Preserving Model Order Reduction on Manifolds
Patrick Buchfink, Bernard Haasdonk

1078 Quantifying the error in the numerical integration of ODEs based on isotonic regression
Yuto Miyatake

1428 Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds
Silke Glaß, Patrick Buchfink, Bernard Haasdonk

1465 Structure preserving semibalanced truncation of port-Hamiltonian systems
Yu Kawano, Jacek Dmochowski, Alex Scherpen

1508 Enforcing physical structure in Bayesian learning of dynamical systems: stability and energy conservation
Alex Gorodetsky, Nicholas Galiotis

1652 A particle dynamics model for coarsening process of Cahn-Hilliard equation
Tomoaki Miyatake, Yuto Miyatake, Daisuke Furihata
2802 Fast Electrostatic Field Analysis with Unstructured Numerical Human Body Model Using Parallel Geometric Multigrid Method
Masamune Nomura, Amane Takei

2842 Development of Huge-Scale Microwave analysis software: ADVENTURE_Fullwave
Amane Takei

2843 Performance evaluation of parallel wave-sound analysis software: ADVENTURE_Sound
Akihiro Kudo, Amane Takei

2846 Development of 3D visualization system from 2D Plane Figures
Natsumi Okatani, Ryuji Shioya, Yasushi Nakabayashi, Terutoshi Tada

2865 Efficient Implementation of Skyline Solver for Many Core and GPU Environment
Hiroshi Kawai

2868 Effect of Metabolic Heat Generation, Blood Perfusion and Environment Temperature on the Body Temperature—an Approach of Finite Element Simulation
A M M Mukaddes, Kanta Purkaysta, Ryuji Shioya, Amane Takei

MS0734 Discretization methods and software tools for the simulation of complex fractured media in computational geophysics

1004 Numerical modeling of injection-induced slip and propagation of fractures in poroelastic media
*Keynote Lecture
Hau Dang Trung, Eirik Keilegavlen, Inga Berre

3010 Multilevel and domain decomposition methods for solving large scale phase-field fracture simulations
Aiena Kupanidakova, Rolf Krause

MS0735 Semi-analytical numerical methods and their applications in mechanics and engineering

927 New Straightforward Benchmark Solutions for Bending and Free Vibration Solutions of Clamped Anisotropic Rectangular Thin Plates
An Dongqi

1235 Analytic Solutions of 2-D Transient Heat Conduction Problems by the Symplectic Superposition Method
Dian Xu

1238 Symplectic Superposition Method for Analytic Solutions to Plate and Shell Problems
*Keynote Lecture
Rui Li

1299 Development of 3D Fiber Computational Grains for the Micromechanical Modeling of Fiber-Reinforced Composites
Yezeng Huang, Leiting Dong

MS0736 Nonlinearly Stable High-Order Methods for Partial Differential Equations

588 Space-time hybridizable discontinuous Galerkin methods for incompressible Navier-Stokes
Sander Rheebergen, Tamás Horvath, Keegan Kirk

780 An industry-relevant implicit LES via spectral/hp element methods
Gianmarco Mengaldo

1445 Nonlinearly Stable Split Forms for Weight-Adjusted Flux Reconstruction High-Order Methods in Curvilinear Coordinates
Alexander Cicchino, Siva Nadarajah

1492 Entropy-stable Discretizations for Robust Active Flow Control
Jason Hicken, Luiz Cagliari, Tucker Babcock, Sandipani Mishra

1533 High-Order Implicit Shock Tracking for Time-Dependent Flows
Charles Naudet, Matthew Zahr

1561 Entropy Stable Strong Impostion of the No-slip Condition for the Compressible Navier-Stokes Equations
Anita Gjesteland, Magnus Svärd

2163 Entropy-stable finite-difference WENO schemes for multiphase flows
Ben Simpson, David Del Rey Fernandez, Sivabal Sivaloganathan

MS0737 Quantum Horizons for Computational Mechanics

463 FEqa: Solving Finite Element Problems using Quantum Annealing
Osama Muhammad Raisuddin, Suvaru De

1190 Modeling of Complex Nanostructures using a Large-Scale DFT code CONQUEST
Tsuyoshi Miyazaki

1532 Practical Boundary Conditions for Electronic Structure Calculations
Eiji Tsuchida

2027 DFT-FF — a massively parallel real-space density functional theory code using adaptive finite-element discretization, and its application to study dislocation core energetics in magnesium
Sambit Das, Phani Motamarri, Vikram Gavini

2521 Simulation of the phase-separation structure of a diblock polymer using Ising machine
Katsuhiro Endo, Yoshihi Matsuda, Shu Tanaka, Mayu Muramatsu

2697 A Data Driven Approach to Improved Exchange-Correlation Functional in DFT
Bikash Kanungo, Vikram Gavini

2836 Development of structure optimization method by quantum annealing
Rio Honda

3070 Finite-element based methodologies using projector augmented wave approach (PAW) for large-scale density functional theory calculations
Phani Motamarri, Sambit Das, Kartick Ramakrishnan

MS0740 Machine learning methods for adaptive mesh refinement and finite element discretization

464 r-adaptivity Deep Learning method for solving Partial Differential Equations
Ángel Javier Omella, David Pardo
A mesh-less, ray-based Deep neural network method for the Helmholtz equation with high frequency
Andy Yang, Feng Gu

Adaptive integration to overcome quadrature problems in Neural Networks
Jon Ander Rivera, Angel Javier Omella, Jamie Michael Taylor, David Pardo

Bayesian Optimization for Simulation Errors Under Time Constraints
Felix Huber, Dominik Goedeke, Miriam Schulte

A spectral approach for time-dependent PDEs using machine-learned basis functions
Saad Qadeer, Brek Meuris, Panos Stinis

Smooth approximation of physics using Deep Neural Networks and Isogeometric Analysis
Maciej Paszynski, Kamil Doleglo, Anna Paszynska, Leszek Demkowicz

The Koiter-Newton method for thermal-mechanical buckling and postbuckling analysis of thin-walled structures
Ke Liang, Zheng Li

New creation of origami based on bifurcation analysis from fullerene structures
Ichiro Ario, Dong Ma

Structural instability of multiple micro-periodic structures
Ichiro Ario, Haicheng Ma

Buckling Analysis of Stiffened Thin-Walled Structures Using a Novel Beam-Shell Isogeometric Model
Yu Wang, Peng Hao

Stochastic Isogeometric Buckling Analysis of Complex Thin-walled Structures with Random Material Properties
Hao Tang, Peng Hao

Uncertainty quantification method for geometric imperfections of cylindrical shells based on multi-Chebyshev envelope model
Hao Yang, Shaojun Feng

Model-Data-Driven Hybrid Computational Framework for Large Deformation Analysis *Keynote Lecture
Zerotao Kuang, Qin Huang, Ping Li, Yichen Yang, Jie Yang, Qian Shao, Heng Hu

Global buckling design optimization of spatially graded grid-stiffened plates based on asymptotic homogenization *Keynote Lecture
Liang Xu

A Dynamically Aggregated Decomposition Strategy for High-dimensional Global Optimization
Qineng Wang

Elastic Buckling of Cylindrical Shell Subjected Pressure Load at Surface
Takeki Yamamoto, Takahiro Yamada

Isogeometric Stability Analysis of Thin-Walled Structures
Yujie Guo, Ke Liang

High-Order discretization of steady and unsteady biharmonic problems: Applications in elasticity and fluid dynamics
Luc Pastur

Nonlinear manifold to component-wise reduced order models towards multi-scale problems
Youngsoo Choi

Reduced Order Modeling for a LES filtering approach
Annalisa Quain, Michele Girfoggio, Gianluigi Rozza

Model Reduction of Convection-Dominated Partial Differential Equations via Optimization-Based Implicit Feature Tracking
Marzieh Alireza Mirhoseini, Matthew Zahr

Improved gradient enhanced Kriging model for high-dimensional function approximation
Kai Cheng, Ralf Zimmermann

Adaptive Data-driven Reduced Order Modelling for Strut-braced Ultra-high Aspect Ratio Wing Configuration
Peter Nagy, Marco Fossati

Data-driven reduced order models for maternal health
William Snyder, Jeffrey McGuire, Changhong Mou, Traian Iliescu, Raffaella De Vita

Geometric Structure-Preserving Design Space Dimensionality Reduction
Shahroz Khan, Panagiotis Kaklis, Andrea Serani, Matteo Diez, Konstantinos Kostas

Monolithic Multigrid for a Reduced-Quadrature Discretization of Poroelasticity
James Adler, Yunhui He, Xiaozhe Hu, Scott MacLachlan, Peter Ohm
A New Framework for the Stability Analysis of Perturbed Saddle-point Problems and Applications
Qingguo Hong, Johannes Kraus, Maria Lymbery, Fadi Philo

Least squares discretization and preconditioning for singularly perturbed problems
Constantin Bacuta

Saddle Point Least Squares for Convection-Diffusion
Daniel Hayes

A C0 finite element method for the Biharmonic Problem with Navier Boundary Conditions
Hengguang Li, Peimeng Yin, Zhimin Zhang

On the Necessity of the In-Suf Condition for a Mixed Formulation
Daniele Botti, Fleurianne Bertrand

MS0745 Waves: Advanced Numerical Methods and Applications

Tamas Horvath, Sander Rhebergen

Symplectic Hamiltonian finite element methods for electromagnetics
Manuel Sanchez, Shuaki Du, Bernardo Cockburn, Ngoc-Cuong Nguyen, Jaime Peraire

A coupled-mode theory for exterior scattering problems based on a non-orthogonal modal expansion
Kei Matsushima, Yuki Noguchi, Takayuki Yamada

Implicit Trefftz discontinuous Galerkin method
Christoph Lehrenfeld, Paul Stocker

A Comparison of Three Iterative Solution Schemes for Elliptic PDEs
Reza Abedi, Giang Huynh, Robert Haber

An adaptive nonlinear elimination preconditioned space-time solution algorithm for hyperbolic partial differential equation problems
Feng-Nan Hwang, Chang-Wen Liang

A Parallel--Adaptive Spacetime Discontinuous Galerkin Solver for Three-Dimensional Hyperbolic Systems
Robert Haber, Armit Machukar, Christian Howard, Reza Abedi, Pavan Ravi, Volodymyr Kindratenko

MS0747 Accurate and Efficient Solution Remapping Strategies for Coupled Multiphysics Systems

Benchmarking the Regridding Functionality of Climate Modelling Coupling Software
Sophie Yakie, Andrea Piacentini, Gabriel Jonville

Remapping native fields for climate applications
Paul Kuberry, Mauro Perego, Nathaniel Trask, Pavel Bochev

Evaluation of Radial-Basis-Function Data Mappings of the Coupling Library preCICE
David Schneider, Kyle Davis, Benjamin Uekermann, Miriam Schulte

Efficient Multi-Material Remap in High-Order ALE Hydrodynamics
Veselin Dobrev, Tzanio Kolev, Robert Rieben, Vladimir Tomov, Arturo Vargas

WLS-ENO Remap for Cell-Averaged Data and Anisotropic Meshes on Surfaces
Yipeng Li, Xiangmin Jiao

Computational modeling and simulation of discontinuities

An adaptive scheme for free-surface seepage problems in porous media
Juan Felipe Giraldo

Scale Bridging Dislocation Networks with Length Distributions
Yurui Zhang, Ryan Sills

Boundary Element Method: Fundamentals and Applications

Development of Low Cost Solver for Incompressible Viscous Fluid Flow based on Fundamental and Particular Solutions of Differential Operator
Yoshihiro Yamada, Nobuyoshi Tosaka

An acceleration of the time-domain boundary element method for electromagnetic scattering problems in 3D
Takahiro Saitoh, Akira Furukawa, Sohichi Hirose

A boundary element method for evaluating high-order frequency derivatives of acoustic wave scattering by periodic structures
Yuta Honshuku, Hiroshi Isakari

A preconditioner based on Calderon’s formulae for isogeometric boundary element methods for Maxwell’s equations
Kanta Tahara, Kazuki Nino

Boundary element method to investigate the interaction between geometrically necessary dislocations and voids by the nonsingular dislocation theory
Yi Cui, Toru Takahashi, Toshiro Matsumoto

Testing the use of radial basis function augmented with polynomials as basis functions in the boundary element method for heat transfer problems
Filipe Lopes Cruzeiro, Lucas Silveira Campos

Topology optimization Based on Level set method of Heat conduction for the Heat radiation boundary condition
Shinsei Sato, Toru Takahashi, Hiroshi Isakari, Toshiro Matsumoto

Influence of the human body on car cabin sound field
Akira Higashikawa, Mitsuharu Watanabe, Manabu Sasajima, Yoshiteru Uchida
MS0801 DATA-DRIVEN, SURROGATE, PHYSICS-INFORMED AND GREY-BOX MODELLING FOR TREATING RANDOMNESS AND IMPRECISION IN COMPUTATIONAL ENGINEERING

2128 An adaptive dimension-reduction method-based sparse polynomial chaos expansion via sparse Bayesian learning and Bayesian model averaging
Wanxin He, Gang Li, Gang Zhao, Ye Liu

2291 High Dimensional Reliability Analysis using First-order Hybrid High Dimensional Model Representation and Hierarchical Kriging
Youngseo Park, Ikjin Lee

2301 New System Reliability Based Design Optimization Method using New Active learning function
Seonghyeok Yang, Ikjin Lee

2762 Adaptive Infill Sampling Method for Gradient-Enhanced Kriging
Mingyu Lee, Ikjin Lee

MS0802 COPEING WITH RANDOMNESS AND IMPRECISION IN COMPUTATIONAL MECHANICS

715 New Non-Intrusive Stochastic Finite Element Method for Geometrically Nonlinear Bending Analysis of Uncertain Laminated Composite Plates
Hui Huo, Guohai Chen, Dixiong Yang

724 Unified Framework of Computational Stochastic Mechanics: Direct Probability Integral Method
Dixiong Yang, Guohai Chen

1785 Adaptive probabilistic integration for estimation of Sobol's sensitivity indices under epistemic uncertainties
*Keynote Lecture
Jingwen Song, Jingyu Lei

2160 Computing Upper Probabilities using Global Optimization Algorithms together with Importance Sampling Techniques
Thomas Fetz

3415 Reliability Analysis of Industrial Robot Positioning Accuracy Considering Epistemic Uncertainty
Deqian Zhang, Yunfei Liang, Xu Han

MS0803 Quality of model prognosis - from lab data to structural performance

1775 Investigation of complex-valued correlation models for model updating with spatially distributed data
Felix Schneider, Iason Papaioannou, Daniel Straub, Gerhard Müller

1794 Inverting the Process-Material-Performance chain in the presence of uncertainty
Atul Agrawal, Jörg F. Unger, Phaedon-Stelios Koutsourelakis

2546 Tunnel Lining Deformation Prediction Using Limited Measurements And Gappy Proper Orthogonal Decomposition
Ba-Trung Cao, Nicola Gottardi, Steffen Freitag, Günther Meschke

3016 Inferential Uncertainty in Surrogate-based Inference - a Bayesian Estimate
Sascha Ranftl, Wolfgang von der Linden

MS0804 Physics-Based Data-Driven Modeling and Uncertainty Quantification in Computational Materials Science and Engineering

700 Information-Theoretic Stochastic Models for Uncertainty Quantification in Computational Plasticity
Johann Guilleminot, Shanshan Chu

935 Impact Problems on Dyadic Tensor-Valued Random Fields
Yaswanth Sai Jetty, Anatoliy Malyarenko, Martin Ostoja-Starzewski

2722 Accelerating a Nonparametric Probabilistic Method for Physics-Based Data-Driven Modeling and Uncertainty Quantification
Marie Jo Azzi, Chady Ghnatios, Charbel Farhat

MS0805 Certification of Computer Simulations and Adaptive Modeling

377 Towards automated computation with uncertainty estimation for industrial simulation of ship flow
Jeroen Wackers, Ganbo Deng, Clémence Raymond, Emmanuel Guilmineau, Alban Leroyer, Patrick Queutey, Michel Visonneau

384 Polynomial-degree-robust a posteriori error estimation for the curl-curl problem
Théophile Chaumont-Frelet, Alexandre Ern, Martin Vohralík

518 Adaptive Stochastic Collocation Methods for Uncertain Unsteady Gas Transport in Networks
Jens Lang, Pia Domschke, Elisa Strauch

749 Anisotropic adaptive finite elements for aluminium electrolysis
Paride Fauselli, Marco Picasso

835 Data-based Model Updating, Selection, and Enrichment using the Modified Constitutive Relation Error Concept
Ludovic Chamois, Antoine Benady, Sahar Farahbakhsh, Emmanuel Baranger, Martin Poncelet

972 Optimality of Adaptive Time-Stepping
Michael Feischl

Felipe Vincio Caro, Vincent Domschke, Julen Alvarez-Aramberriz, Elisabete Alberdi, David Pardo

1379 Goal-oriented adaptive MLMC method for elliptic random PDEs
Yang Liu, Joakim Beck, Erik von Schwerin, Raul Tempone

1690 On Error Control and Adaptive Reduced Basis Enrichment for Two-Scale Poroelasticity
Fredrik Ekre, Fredrik Larsson, Kenneth Runesson, Ralf Janicke

2031 Adaptive Concurrent Multiscale Modelling Using Hybridized Discretizations, Error Estimation and Machine Learning
Tim Wildey
Revisiting techniques employed in error estimation for their use in 2-level structural topology optimization with the Cartesian grid FEM
Marc Bosch-Galea, Edvard A.H. Maunder, Olivier Allix, Juan José Rodríguez, Enrique Nadal

A posteriori analysis with error-dominated oscillation for higher order methods
Andreas Veeser

Mesh Adaptivity using Optimization Methods
Sege Prudhomme, Kenan Kergrene, Jonathan Vacher

MS0806 Verification techniques in computational physics and applied mathematics

Manufactured Solutions for the Method-of-Moments Implementation of the Electric-Field Integral Equation
Brian Ferre, Neil Matula, William Johnson

MS0807 Numerical Analysis and Design with Polymorphic Uncertainties – Advanced Methods and Strategies

Multifidelity Moving Particles via Multiplicative Information Fusion
Jonas Kaupp, Carsten Proppe

Considering epistemic uncertainty in optical marker based joint angle calculation during human gait
Eduard Sebastian Scheteener, Simon Henrich, Sigrid Leyendecker

Data-Driven Computational Homogenization of Polymorphic Uncertain Material Properties
Selina Zschocke, Ferenc Leichsenring, Wolfgang Graf, Michael Kaliske

Homogenization and dimension reduction of elastic rods with randomly perturbed geometry
Steve Wolff-Vorbeck, Patrick Dondl, Stefan Neukamm, Yongming Luo

Polymorphic Uncertain Dependency Structures in Multivariate Fuzzy Probability-based Random Variables with Fuzzy Probability-based Copula
F. Niklas Schietzold, Jonas Pallien, Wolfgang Graf, Michael Kaliske

Reliability-Based Design Optimization under Polymorphic Uncertainties: Application to Locally Laser-Harden Car Components
Niklas Mioka, Daniel Baizani

MS0808 Numerical methods for verification, validation and uncertainty quantification in manufacturing, civil engineering, advanced materials and biomechanics

Effect of material properties of pedicle screw fixation system rods on surgical treatment of kyphosis using patient specific finite element models
Heoung Jae Chun

A two-stage method simulating random field over manifold
Yan-Ping Liang, De-Cheng Feng, Xiaodan Ren

Application of Non-Linear Stochastic Finite Element Method based on Multi-Element Non-Intrusive Spectral Projection Method to Stochastic Elasto-Plastic Problems
Hidenori Nakagawa

Two-Scale Damage Propagation/Strength Analysis of CFRP Laminates Considering Variability of Fiber Strength
Kazuma Akashi, Tetsuya Matsuda

Decoupled Multiscale Damage/Strength Analysis of CFRP Laminates
Yudai Tanio

Multiscale Inelastic Analysis of FW-CFRP for High-Pressure Hydrogen Tanks
Tomoya Takahashi, Tetsuya Matsuda, Naoki Morita, Masahito Ueda, Tomohiro Yokozeki, Wataru Ivase

Sintering Simulation for Ceramics based on Multiplicative Decomposition of Thermo-Mechanical Deformation Gradient
Chikako Natsumeda, Kazumi Matsui, Junichi Tatami, Takahiro Yamada

Downscaling Biomechanics Simulation of Mandibular Bone from Macroscopic Oral Implant to Nanoscopic Osteon using Micro-CT and SHG Images
Naoki Takano, Noemie Jeannin, Kaede Oishi, Kento Onda, Satoru Matsunaga

Probabilistic modelling of geometrical imperfection for additively manufactured circular hole using aluminum alloy and polymide
Haruma Tanaka, Naoki Takano, Hideo Takizawa

Probabilistic modelling and homogenization analysis of porous support structure for titanium alloy additive manufacturing considering defects
Raphael Farcy, Masataka Morikawa, Naoki Takano, Hideo Takizawa, Kento Onda, Satoru Matsunaga

Numerical study of orthopaedic implant surgery for the development of stability evaluation device with consideration of uncertainties
Shotaro Omichi, Naoki Takano, Daizuke Tawara

Numerical prediction of misorientation of drilling during oral implant surgery considering morphology of mandibular trabecular bone and study on drilling force sensing
Mikoya Sugano, Raphael Farcy, Naoki Takano, Kento Okada, Satoru Matsunaga

Quantification of the contribution of particle size distribution in granular flows
Shuji Morizyuchi

Gaussian Process Regression Surrogate Modeling with Transfer Learning for Low Computational Cost Structural Reliability Analysis
Taisei Saida, Mayuko Nishio

An Example of the Verification and Validation for Fracture Analysis of Reinforced Concrete Using a Damage Model
Eigo Watanabe, Junki Hanyu, Yota Kawachi, Takumi Ashida, Mao Kurumatani

High Quantile Estimation for Transpiration Cooling
Ellen Steins, Michael Herty

Uncertainty Quantification and Validation in Failure Simulation of Reinforced Concrete Using Discrete Element Model
Yoshitomo Yamamoto, Toshiohde Saka, Mao Kurumatani, Naoshi Ueda

A trial for validating the model of reinforced concrete beams with emphasis on uncertainty quantification
Toshiohde Saka, Yoshitomo Yamamoto, Naoshi Ueda, Mao Kurumatani
MS0809 Uncertainty Quantification in Particle-Based Simulations of Fluids, Polymers, and Soft Matter

3414 “This One Weird Trick to Put Error Bars on Molecular Simulations, Statisticians Love It!”
Yuanhao Li, Gerald Wang
MS0902 Modelling of Structural Instability, Structural Collapse and Impact

1534 Finite Element Analysis at Pin Joints of Modular Bridge under Uniaxial Tensile Loads
Yu Koike, Yuki Chikaiho, Masatoshi Nakazawa, Ichiro Ario

MS0903 Vehicle Scanning Method for Bridges

364 Vehicle-Bridge Interaction System with Non-Uniform Cross-Sections
Judy Yang, Chun-Hsien Wu

565 Detecting Bridge’s Frequencies by the Rocking Motion of a Moving Test Vehicle
Hao Xu, Y.B. Yang

1007 Identification of track/bridge frequencies and track modulus by a instrumented moving test vehicle
Kang Shi, Yeong-Bin Yang, Zhihu Wang, Hao Xu

1761 Identification of Bridge Damage Location utilizing Low-pass filtered Accelerations of Slow Moving Cars
Xuzhao Lu, Limin Sun, Chul-Woo Kim, Kai-Chun Chang, Zhudian Han

1791 Detection of bridge frequencies using passing vehicles
Shota Urushadze, Jong-Dar Yau, Jan Bayer

2001 Bridge Modal Measurement Using a Novel Frequency-Free Test Vehicle in Parked State: Theory and Experiment
Zhi Li, Zhilu Wang, Yeong-Bin Yang

MS0904 Shell and spatial structures

942 A numerical approach to the design of gridshells for WAAM
Matteo Brugi, Vittoria Laghi, Tomaso Trombetti

1374 A computational framework for modeling discontinuities in anisotropic rods
Tian Yu, Francesco Marmo, Salvatore Sessa, Sigrid Andreaeenssens

1538 Forensic Evaluation of Historic Shell Structure: Development of In-Situ Geometry
Joshua Schultz, Katrina L. Springer, Joseph A. Roberson, Jackson M. Carroll, Mark D. Hegblooom

1837 Multi-body Rope Approach for the Form-Finding of Shape Optimized Grid Shell Structures
Amedeo Manuelli, Jonathan Melchiorre, Laura Sardone, Giuseppe Carlo Marano

1839 Damaging Configurations in Arch Structures with Variable Curvature and Tapered Cross-section
Jonathan Melchiorre, Amedeo Manuelli Bertetto, Laura Sardone, Giuseppe Carlo Marano

1857 Experimental Investigation of the Static and Dynamic behaviors of 3D-Printed Shell Structures
Raffaele Cucuzza, Alessandro Cardoni, Amedeo Manuelli, Marco Domaneschi, Gian Paolo Cimellaro, Giuseppe Carlo Marano

1861 Evolution of Distribution Algorithm for Constrained Optimization in Structural Design
Marco Martino Rosso

2947 A Very Simple Fully Nonlinear Shell Finite Element
Matheus Lucci Sanchez, Cinthia A.G. Sousa, Paolo M. Pimenta

3019 Discovering Reciprocal Tensegrities with Symmetric Connectivity
Pierluigi D’Acunto, Andrea Micheletti

3305 Evaluation of Tensegrity-Like Units for Nonlinear Mechanical Metamaterials
Andrea Micheletti, Claudio Intriglia, Nicola A. Nodargi, Edoardo Artioli, Fernando Fraternali, Paolo Bisegna

3399 Finite Element Analysis of Load Capacity of Panel Bridge with Multi-Scissors Structure
Kumi Ohno, yuki chikaiho

MS0905 Digital twins for the design and optimisation of lightweight structures

2043 Study on Improvement of Bending Strength of Thin-Walled Structures Composed of Sandwich Panels
Kouta Asaumi, Kuniharu Ushijima

2132 The ROM-driven optimization of composite laminated plates for buckling and postbuckling performances
Zheng Li

2180 Nonlinear Dynamic Characteristics and Resonant Actuation of Bi-stable Structures
Yuting Liu

2356 Damage modelling and detection in beams by Newton-Raphson method
Akshay Satpute, David Kennedy, Carol Featherston, Abdullah Mutabbakani

2372 Bayesian data-driven learning of industrial light weight structure design optimisation under uncertainty
David Walton, Carol Featherston, David Kennedy, Abhishek Kundu

3391 Postbuckling Optimization of Stiffened Panels via Topological Design
Sheng Chu, Carol Featherston, David Kennedy, Hyunsun Kim

MS0906 New numerical methods for slender bodies and their interactions

560 A New Mixed FE-Formulation for Liquid Crystal Elastomer Films *Keynote Lecture
Michael Groß, Francesca Concas, Julian Dietzsch

1001 Viscoelastic Glass Plates Co-Sagging Simulation Coupled with Air Suction
Zheming Zheng, Steve Burdette, Anurag Jain

1022 Experimental investigation and mechanical characterisation of cables
Prateek Sharma, Andre Hildebrandt, Alexander Duster, Stefan Diebels

1289 Modelling Collisions and Fluid-Structure Interaction for Highly Flexible Cosserat Rods
Bastian Löhner, Silvio Tschigsale, Jochen Fröhlich

1376 A General Higher-Order Shell Theory for incompressible and anisotropic hyperelastic materials using Orthonormal Moving Frame: an application to Arterial Mechanics
Archana Arbind

1584 New Experimental Characterisation of Cable Systems
Carole Tsegouog, Vanessa Dörlich, Joachim Linn, Stefan Diebels

1823 An objective and path independent geometrically non-linear Reissner-Mindlin shell formulation *Keynote Lecture
Alexander Müller, Manfred Bischoff

2693 A Simple Fully Nonlinear Triangular Shell Finite Element
Cinthia Sousa, Matheus Sanchez, Paulo Pimenta
MS0907 Multiscale mechanics of soft networks: from nonwovens to polymers and living tissues

1808 Discrete Network Models inspire a new class of Continuum Constitutive Models for Fibre Network Materials
Ben-Rudolf Britt, Alberto Stracuzzi, Edoardo Mazza, Alexander E. Ehret

3377 Modal tests of inflatable wings based on distributed MFC actuators
Farmin Meng, Qiyue Ma, Nuo Ma, Junhui Meng

MS0908 NON-MATERIAL MODELLING OF AXIALLY MOVING CONTINUA: ARBITRARY LAGRANGIAN-EULERIAN DESCRIPTION IN STRUCTURAL MECHANICS

676 Non-material kinematic modelling in roll forming of steel sections
Emin Koçbay, Yury Vetyukov

1592 Geometrically Exact Dynamics of Sliding and Rotating Nested Rods for Modeling Concentric Tubes Robots
Federico Renda, Costanza Armanini, Frederic Boyer

1706 Sticking and sliding of an endless elastic strip on a moving rough surface
Yury Vetyukov

2228 Mixed Eulerian Lagrangian Approach in Rolling Mill Simulations
Peter G. Gruber, Klaus Lohe

2926 A mixed finite-element formulation for axially moving continua
Alexandar Humer, Astrid Pechstein, Michael Kommer

MS0909 New Advances in Computational Modelling and Seismic Intervention Techniques of Historical Masonry Structures

2166 Seismic Vulnerability Assessment of Historic Masonry Buildings through Fragility Curves Approach
Grigor Angjeliu, Giuliana Cardani, Elsa Garavaglia

2219 Unbonded Fiber Reinforced Elastomeric Isolators (UFREIs) made of high damping natural rubber blends
Gaetano Pianese, Gabriele Milani, Antonio Formisano

2905 The non-smooth tale of Accumoli civic tower
*Keynote Lecture
Mattia Schiavoni, Ersilia Giordano, Francesco Clementi

3235 Out of Plane Lower Bound Limit Analysis
Peixuan Wang, Gabriele Milani

MS0910 Adaptive Engineering Structures

567 Fault Diagnosis for Adaptive Structures
Jonas Steifelmair, Michael Bohm, Oliver Sawodny, Cristina Tarín

612 Control Strategies for Adaptive High-Rise Structures
Spasena Dakova, Julia Laura Heidingsfeld, Michael Boehm, Oliver Sawodny

311 Optimization-Based Studies on the Integration of Load Alleviating Deformation Behaviour in Active Morphing Wing Sections
Florian Deul, Andreas Hauffe, Klaus Wolf, Johannes Markmüller

999 Actuation of concrete slabs under bending with integrated fluidic actuators
Markus Nitzlader, Markus J. Bosch, Hansgeorg Binz, Matthias Kreimeyer, Lucio Blandini

1130 Effective range of integrated fluidic actuators in structural elements
Matthias J. Bosch, Markus Nitzlader, Timon Burghardt, Matthias Bachmann, Hansgeorg Binz, Lucio Blandini, Matthias Kreimeyer

1626 State Estimation for Adaptive Structures
Amelie Zeller, Michael Böhm, Oliver Sawodny, Cristina Tarin

1921 Formulation of actuation units for stress-free control of deformations in statically indeterminate adaptive structures using actuation influence matrices
Simon Steffen, Lucio Blandini, Werner Sobek

2427 Vibration control of simply supported beam bridges equipped with an underdeck adaptive tensioning system
Arka Prabhata Rekhowardojo, Gennaro Senatore, Manfred Bischoff, Lucio Blandini

MS0911 Digital Twins and Uncertainty Quantification in Structural Dynamics

509 Transfer learning to leverage digital twins in drill string dynamics
Thiago Ritto, Keith Worden, David Wagg, Fernando Rochinha, Paul Gardner

528 DRILL STRING MODEL SELECTION AND PARAMETER ESTIMATION
Daniel Castello, Thiago Ritto, Michael Souza

727 The Local/Global Coefficient of Friction of Elastic Contacting Bodies with Random Roughness
Han Hu, Arias Batou, Huajiang Ouyang

1347 An Approach for Optimal Sequential Sensor Placement Under Steady-State Dynamics
Mark Chen, Kavinayan Sivakumar, Gregory Banyar, Jessica Preston, Brian Golchert, Timothy Walsh, Michael Zavlanos, Wilkins Aquino

2370 Robust State-Input Estimation for Differential Algebraic Equations and Application to Multibody Systems
Tomaso Tamarozzi, Pavel Jránek, Daniel De Gregoriis

2371 Pitch Bearing Parameter Estimation for Virtual Wind Turbine Testing Applications
Lorenzo Mazzanti, Mathijs Vvet, Ali Rezayat, Daniel De Gregoriis, Tommaso Tamarozzi, Pavel Jránek, Wim Desmet

2873 Stochastic Physics-based Model Updating for Fatigue Crack Detection in Riveted Lap Joints Using Lamb Waves
Wonjun Kim, Byeng D. Youn

2906 Learning measured bifurcation diagrams with physics-based models augmented by machine-learned structures
*Keynote Lecture
Sandor Beregi, David Barton, Djamel Rezgui, Simon Neild

2963 The Comparison of Sensor Optimisation Strategies for Structural Health Monitoring Using Machine Learning
Tingta Wang, Keith Worden, Robert Barthorpe, David Wagg
Simulation of wave propagation in remote bonded FBG sensors using the spectral element method
Piotr Fiborek, Rohan Soman, Pawel Kudela, Wieslaw Ostachowicz

Damage detection in isotropic cracked rod via fusion of genetic algorithm with deep learning-based wave propagation simulators
Jitendra Sharma, Piotr Fiborek, Rohan Soman, Pawel Kudela, Konstantinos Agathos, Eleni Chatzi, Wieslaw Ostachowicz

A Parametric Reduced Order Model (pROM) for Structural Health Monitoring (SHM) relying on Ultrasonic Guided Waves
Paul Sieber, Sergio Nicoli, Konstantinos Agathos, Rohan Soman, Wieslaw Ostachowicz, Eleni Chatzi

Lamb wave-based damage identification in bounded structures through an inverse Bayesian process
Wen Wu, Dimitrios Chironopoulos, Sergio Cantero Chinchilla, Muhammad Khalid Malik, Wangji Yan, Rasa Remenye-prescott

Full Waveform Inversion of Seismic Input Motions at a Domain Reduction Method Boundary in a PML-truncated domain
Bruno Guidio, Heeding Goh, Chansok Jeong

Critical Velocity and Instability of Inertial Objects Moving Uniformly on Layered Track Models
Zuzana Dimitrovová

Warping Torsion of FGM Beams with Open Cross-section and Spatially Varying Material Properties
Justin Murin, Stephan Kugler, Juraj Hrabovský, Juraj Paulech, Vladimir Kutíš, Mehdi Aminbaghai

A Generalized Beam Theory and its Applications in FGM Beam Structures
Stephan Kugler, Peter Foltu, Justin Murin

Analysis and Testing of Modular Functionally Graded Soft Metamaterial
Jan Novák, Jan Havelka, Martin Doškář, Jozef Michálek

A numerical analysis of magnetic heterogeneous microstructures based on micromagnetic finite element simulations
Maximilian Reichel, Jörg Schröder

Active Vibration Control of Aluminum Beam using Piezoelectric Actuator
Simon Berta, Vladimir Goga, Vladimír Kutíš, Ladislav Šarkán

Beam Finite Element with Piezoelectric Layers - Modeling and Control
Vladimir Kutíš, Juraj Paulech, Gabriel Galík, Justin Murin, Vladimír Goga, Michal Mišlavin Uličný, Simon Berta

Analysis of Actuator Structure Using New Electro-Thermo-Mechanical Finite Element Derived for Functionally Graded Materials
Juraj Paulech, Justin Murin, Michal Uličný, Vladimír Goga, Vladimir Kutíš, Gabriel Galík, Tibor Sedlár, Simon Berta, Ladislav Šarkán

Guided Wave-Based Structural Condition Assessment
Simulation of wave propagation in remote bonded FBG sensors using the spectral element method
Piotr Fiborek, Rohan Soman, Pawel Kudela, Wieslaw Ostachowicz

Damage detection in isotropic cracked rod via fusion of genetic algorithm with deep learning-based wave propagation simulators
Jitendra Sharma, Piotr Fiborek, Rohan Soman, Pawel Kudela, Konstantinos Agathos, Eleni Chatzi, Wieslaw Ostachowicz

A Parametric Reduced Order Model (pROM) for Structural Health Monitoring (SHM) relying on Ultrasonic Guided Waves
Paul Sieber, Sergio Nicoli, Konstantinos Agathos, Rohan Soman, Wieslaw Ostachowicz, Eleni Chatzi

Lamb wave-based damage identification in bounded structures through an inverse Bayesian process
Wen Wu, Dimitrios Chironopoulos, Sergio Cantero Chinchilla, Muhammad Khalid Malik, Wangji Yan, Rasa Remenye-prescott

Full Waveform Inversion of Seismic Input Motions at a Domain Reduction Method Boundary in a PML-truncated domain
Bruno Guidio, Heeding Goh, Chansok Jeong

Critical Velocity and Instability of Inertial Objects Moving Uniformly on Layered Track Models
Zuzana Dimitrovová

Warping Torsion of FGM Beams with Open Cross-section and Spatially Varying Material Properties
Justin Murin, Stephan Kugler, Juraj Hrabovský, Juraj Paulech, Vladimir Kutíš, Mehdi Aminbaghai

A Generalized Beam Theory and its Applications in FGM Beam Structures
Stephan Kugler, Peter Foltu, Justin Murin

Analysis and Testing of Modular Functionally Graded Soft Metamaterial
Jan Novák, Jan Havelka, Martin Doškář, Jozef Michálek

A numerical analysis of magnetic heterogeneous microstructures based on micromagnetic finite element simulations
Maximilian Reichel, Jörg Schröder

Active Vibration Control of Aluminum Beam using Piezoelectric Actuator
Simon Berta, Vladimir Goga, Vladimír Kutíš, Ladislav Šarkán

Beam Finite Element with Piezoelectric Layers - Modeling and Control
Vladimir Kutíš, Juraj Paulech, Gabriel Galík, Justin Murin, Vladimír Goga, Michal Mišlavin Uličný, Simon Berta

Analysis of Actuator Structure Using New Electro-Thermo-Mechanical Finite Element Derived for Functionally Graded Materials
Juraj Paulech, Justin Murin, Michal Uličný, Vladimír Goga, Vladimir Kutíš, Gabriel Galík, Tibor Sedlár, Simon Berta, Ladislav Šarkán

Guided Wave-Based Structural Condition Assessment
Simulation of wave propagation in remote bonded FBG sensors using the spectral element method
Piotr Fiborek, Rohan Soman, Pawel Kudela, Wieslaw Ostachowicz

Damage detection in isotropic cracked rod via fusion of genetic algorithm with deep learning-based wave propagation simulators
Jitendra Sharma, Piotr Fiborek, Rohan Soman, Pawel Kudela, Konstantinos Agathos, Eleni Chatzi, Wieslaw Ostachowicz

A Parametric Reduced Order Model (pROM) for Structural Health Monitoring (SHM) relying on Ultrasonic Guided Waves
Paul Sieber, Sergio Nicoli, Konstantinos Agathos, Rohan Soman, Wieslaw Ostachowicz, Eleni Chatzi

Lamb wave-based damage identification in bounded structures through an inverse Bayesian process
Wen Wu, Dimitrios Chironopoulos, Sergio Cantero Chinchilla, Muhammad Khalid Malik, Wangji Yan, Rasa Remenye-prescott

Full Waveform Inversion of Seismic Input Motions at a Domain Reduction Method Boundary in a PML-truncated domain
Bruno Guidio, Heeding Goh, Chansok Jeong

Critical Velocity and Instability of Inertial Objects Moving Uniformly on Layered Track Models
Zuzana Dimitrovová

Warping Torsion of FGM Beams with Open Cross-section and Spatially Varying Material Properties
Justin Murin, Stephan Kugler, Juraj Hrabovský, Juraj Paulech, Vladimir Kutíš, Mehdi Aminbaghai

A Generalized Beam Theory and its Applications in FGM Beam Structures
Stephan Kugler, Peter Foltu, Justin Murin

Analysis and Testing of Modular Functionally Graded Soft Metamaterial
Jan Novák, Jan Havelka, Martin Doškář, Jozef Michálek

A numerical analysis of magnetic heterogeneous microstructures based on micromagnetic finite element simulations
Maximilian Reichel, Jörg Schröder

Active Vibration Control of Aluminum Beam using Piezoelectric Actuator
Simon Berta, Vladimir Goga, Vladimír Kutíš, Ladislav Šarkán

Beam Finite Element with Piezoelectric Layers - Modeling and Control
Vladimir Kutíš, Juraj Paulech, Gabriel Galík, Justin Murin, Vladimír Goga, Michal Mišlavin Uličný, Simon Berta

Analysis of Actuator Structure Using New Electro-Thermo-Mechanical Finite Element Derived for Functionally Graded Materials
Juraj Paulech, Justin Murin, Michal Uličný, Vladimír Goga, Vladimir Kutíš, Gabriel Galík, Tibor Sedlár, Simon Berta, Ladislav Šarkán

Guided Wave-Based Structural Condition Assessment
Simulation of wave propagation in remote bonded FBG sensors using the spectral element method
Piotr Fiborek, Rohan Soman, Pawel Kudela, Wieslaw Ostachowicz

Damage detection in isotropic cracked rod via fusion of genetic algorithm with deep learning-based wave propagation simulators
Jitendra Sharma, Piotr Fiborek, Rohan Soman, Pawel Kudela, Konstantinos Agathos, Eleni Chatzi, Wieslaw Ostachowicz

A Parametric Reduced Order Model (pROM) for Structural Health Monitoring (SHM) relying on Ultrasonic Guided Waves
Paul Sieber, Sergio Nicoli, Konstantinos Agathos, Rohan Soman, Wieslaw Ostachowicz, Eleni Chatzi

Lamb wave-based damage identification in bounded structures through an inverse Bayesian process
Wen Wu, Dimitrios Chironopoulos, Sergio Cantero Chinchilla, Muhammad Khalid Malik, Wangji Yan, Rasa Remenye-prescott

Full Waveform Inversion of Seismic Input Motions at a Domain Reduction Method Boundary in a PML-truncated domain
Bruno Guidio, Heeding Goh, Chansok Jeong

Critical Velocity and Instability of Inertial Objects Moving Uniformly on Layered Track Models
Zuzana Dimitrovová

Warping Torsion of FGM Beams with Open Cross-section and Spatially Varying Material Properties
Justin Murin, Stephan Kugler, Juraj Hrabovský, Juraj Paulech, Vladimir Kutíš, Mehdi Aminbaghai

A Generalized Beam Theory and its Applications in FGM Beam Structures
Stephan Kugler, Peter Foltu, Justin Murin

Analysis and Testing of Modular Functionally Graded Soft Metamaterial
Jan Novák, Jan Havelka, Martin Doškář, Jozef Michálek

A numerical analysis of magnetic heterogeneous microstructures based on micromagnetic finite element simulations
Maximilian Reichel, Jörg Schröder

Active Vibration Control of Aluminum Beam using Piezoelectric Actuator
Simon Berta, Vladimir Goga, Vladimír Kutíš, Ladislav Šarkán
Numerical Modelling of Influence of Interface Properties on the Effects of Different Types of Nonlinearities

Spectral design and nonlinear dispersion properties of Two-dimensional analytical solution for multi-segmented Accurate and Efficient Quadrilateral Plate Element for Vibratory Energy Channeling Between a Linear Responses of a non-linear periodic mass-in-mass chain Harnessing Bistability of Domes using Piezoelectric

1966 Homogenized Model for Masonry Walls Retrofitted by Steel Fibre reinforced Mortar Coating Simona Di Nino, Angelo Luongo
MS0922 Advanced computational methods for wave analysis and their application

454 Detection of Bi-Material Plate Debonding by Guided SH Waves Scattering with BEM
Supawat Wongthongsiri, Sohichi Hirose

875 Anti-plane wave scattering of anisotropic elastic materials using the MFS
Akira Furukawa, Takahiro Saitoh, Sohichi Hirose

1916 Numerical Continuation and Semi-analytical Finite Element Method for Guided Wave Dispersion Analysis
Taizo Maruyama

2105 Inverse Analysis of Wave Sources Based on Sparse Estimation
Sohichi Hirose, Ayumi Wakita, Aya Watanabe, Akira Furukawa, Takahiro Saitoh

2185 Time evolution of multiple scattering of point-like scatters based on a Volterra type integral equation
Kaito Maruyama, Terumi Touhei

MS0923 Modeling of Damping

1478 Numerical Evaluation of Bell-Shaped Proportional Damping Model for Softening Structures *Keynote Lecture*
Chin-Long Lee, Theodore L. Chang

1557 Modelling local energy dissipation mechanisms in the seismic response of reinforced concrete structures
Clotilde Chambreuil, Cédric Giry, Frédéric Ragueneau, Pierre Léger

MS0924 Structural Instability in Earthquake Engineering

808 Collapse Assessment of Steel Buildings with Deep Columns under Tri-directional Seismic Excitations
Hsuan-Chieh Wang, Tung-Yu Wu

1473 Influence of Position of Decks on Seismic Behaviour of Scissors-type Bridge
Yuko Chikahiro, Tomoko kometani, Ichiro Arno

2194 Effects of Longitudinal Reinforcement and Aspect Ratios on Deteriorated Hysteresis Behaviours of Reinforced Concrete Bridge Columns
Ping-Hsiung Wang, Kuo-Chun Chang, Wei-Chung Cheng

2229 Classification of Seismic Failure Modes of Deep Steel Columns Using Machine Learning
Omar Sediek, Tung-Yu Wu, Jason McCormick, Sherif El-Tawil

MS0927 RECENT ADVANCES IN RAILWAY DYNAMICS NUMERICAL MODELLING

696 Uncertainty Quantification for High-speed Train Dynamics Modeling and Optimization under Uncertainties to Limit Energy Consumption
Julien Nespolous, Christian Soize, Christine Funfschilling, Guillaume Perrin

1877 Modelling of Innovative Yaw Dampers for Railway Vehicles
Gioele Isacchi, Francesco Ripamonti, Matteo Corsi, Ton van Dongen

1889 A methodology for including suspension dynamics in a simple context of rail vehicle simulations
Ivano La Paglia, Luca Rapino, Francesco Ripamonti, Roberto Corradi

2102 A semi-analytical method for random vibration of bogie-track-tunnel-soil interaction system
Kazuhisa Abe, Kazuki Sato, Kazuhiro Koro

2393 Assessment of the pantograph-catenary current collection quality by using indirect measurements and Artificial Neural Networks
Santiago Gregori, Manuel Tur, Jaime Gil, Javier Fuenmayor

2543 Iterative algorithm to perform HIL tests with a periodic finite element catenary model
Jaime Gil Romero, Manuel Tur Valiente, Santiago Gregori Verdú, Antonio Corrêa, Francisco Javier Fuenmayor

MS0929 Nonlinear computational structural dynamics in rotating turbomachinery

480 Reduced Order Modeling of Cyclically Symmetric Bladed Disks with Geometric and Contact Nonlinearities
Elise Delhez, Florence Nyssen, Jean-Claude Golinval, Alain Batailly

946 Probabilistic Learning Based Optimization of the Detuning of Bladed-Disks in Nonlinear Stochastic Dynamics in Presence of Mistuning
Evangelos Capiez-Iernout, Christian Soize

978 Nonlinear geometrical dynamics of cyclic symmetry structures: application to bladed disks
Fabrice Thouverez, Nicolas Di-Palma, Samuel Quaegebeur, Benjamin Chouvion

1023 Multi-element polynomial chaos with automatic discontinuity detection for nonlinear systems
Juliette Delaun, Benoit Magnain, Alain Batailly

MS0931 Advances of Vehicle-Bridge Interaction Dynamics

1701 Simulation of High-Speed Railway Bridges under Strong Earthquakes Using a New Dynamic Analysis Procedure
Gao Gong-Lue, Lee Tzu-Ying, Yau Jong-Dar

1980 Spatial-varying frequencies for a beam subject to a moving vehicle *Keynote Lecture*
Jong-Dar Yau

3017 Simulation of Vehicle-Bridge Interaction Using a Novel Dynamic Analysis Procedure with Geometrically Nonlinear Solid Elements
Thanh-Tu Nguyen, Tzu-Ying Lee

3040 Dynamic Simulation of Vehicle-Bridge Interaction Using a Novel Simple Analysis Procedure with Composite Time Integration Method
WEN-HSIAO HUNG
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>620</td>
<td>Development of Adaptive Smoothed Particle Hydrodynamics Method with Focus on Additive Manufacturing Simulation</td>
<td>Mamzi Afsiasi, Christof Lüthi, Markus Bambach, Konrad Wegener</td>
</tr>
<tr>
<td>639</td>
<td>Immersed Boundary Methods for Laser Powder Bed Fusion Process Simulations</td>
<td>Massimo Carraturo, Stefan Kollmannsberger, Alex Viguerie, Ernst Rank, Alessandro Reali, Ferdinando Auricchio</td>
</tr>
<tr>
<td>737</td>
<td>Multiscale Computational Model for Microscale Residual Stress and Dislocation Dynamics in Additively Manufactured 316L Stainless Steel</td>
<td>Dajun Hu, Nicolò Grilli, Wentao Yan</td>
</tr>
<tr>
<td>746</td>
<td>Simulation of keyhole dynamics and keyhole pore formation during metal additive manufacturing</td>
<td>Lu Wang, Wentao Yan</td>
</tr>
<tr>
<td>791</td>
<td>Numerical and Experimental Analysis of Additively Manufactured Particle Dampers</td>
<td>Honghu Guo, Akihiro Takezawa</td>
</tr>
<tr>
<td>850</td>
<td>Modelling and validation of Selective Laser sintering of PA12</td>
<td>Kenneth Meinert, Mohamad Bayat, Jesper Henri Hattel, David Bue Pedersen</td>
</tr>
<tr>
<td>1017</td>
<td>Physically based bead topology model coupled with electro-mechanical power source model applied for wire and arc additive manufacturing</td>
<td>Chetra Mang, Xavier Lorang, Ramdane Tami, François Rouchon</td>
</tr>
<tr>
<td>1115</td>
<td>High-Fidelity Multi-Physics Modeling of Process-Structure-Property Relationships in Additive Manufacturing Keynote Lecture</td>
<td>Wentao Yan</td>
</tr>
<tr>
<td>1165</td>
<td>Numerical simulation of 3D laser surface melting and polishing processes</td>
<td>Alexandre Caboussat</td>
</tr>
<tr>
<td>1168</td>
<td>Simulating Steering-Induced Defects in Composites Additive Manufacturing</td>
<td>Yi Wang, Sarthak Mahapatra, Jonathan Belnoue, Dmitry Ivanov, Stephen Hallet</td>
</tr>
<tr>
<td>1182</td>
<td>Synthetic Volume with Statistical Copy of Additive Manufactured Sample for 3D Crystal Plasticity Simulations</td>
<td>Dmitry Bulgarevich, Masakazu Tsuji, Tomoki Hiraga, Masahiko Demura, Makoto Watanabe</td>
</tr>
<tr>
<td>1312</td>
<td>Data-driven analysis of microstructure-property linkages for additively manufactured materials</td>
<td>Alexander Rallhoff, Paul Seibert, Benjamin Schmidt, Robert Kühne, Martina Zimmermann, Markus Kästner</td>
</tr>
<tr>
<td>1424</td>
<td>Phase-field simulation of melting and solidification of Al-Si hypoeutectic alloy under solidification conditions for powder bed fusion</td>
<td>Masayuki Okugawa, Yuta Ohigashi, Yuya Furushiro, Yuichiro Koizumi</td>
</tr>
<tr>
<td>1479</td>
<td>A Design Digital Twin For Metallurgical Process Development In Directed Energy Deposition Additive Manufacturing Keynote Lecture</td>
<td>Jakub Mikula, Robert Laskowski, Rajeev Ahluwalia, Yingzhi Zeng, Kewu Bai, Ramanayanan Harinarayanan, Stephen Wan, My Ha Dao, Guglielmo Vastola, Yong-Wei Zhang</td>
</tr>
<tr>
<td>1642</td>
<td>Phase-field study of precipitation from solute segregation in IN738LC Ni-based superalloy solidified under conditions for powder bed fusion additive manufacturing</td>
<td>Makoto Wakahayashi, Masayuki Okugawa, Yuichiro Koizumi</td>
</tr>
<tr>
<td>1813</td>
<td>Crystal Introducing Mechanism in Laser Wire Directed Energy Deposition Fabricated Ti6Al4V</td>
<td>Jinghao Li, Mathieu Brochu, Yaoyao Fiona Zhao</td>
</tr>
<tr>
<td>1866</td>
<td>Reduction of thermal distortion of laser powder bed fusion based on sequential inherent strain method</td>
<td>Akihiro Takezawa, Qian Chen, Albert To</td>
</tr>
<tr>
<td>1981</td>
<td>Phase-field study of segregations in Ni-based superalloys solidified under conditions typical of powder bed fusion additive manufacturing</td>
<td>Kazufumi Nose, Kenji Saito, Masayuki Okugawa, Yuichiro Koizumi</td>
</tr>
<tr>
<td>2055</td>
<td>Multi-scale Analysis for Microstructure Evolution in Powder Bed Fusion Process</td>
<td>Sukeyaru Nomoto, Makoto Watanabe</td>
</tr>
<tr>
<td>2445</td>
<td>Additive Manufacturing: From Nonequilibrium Interfaces to Strange Grains</td>
<td>Peter Voorhees, Alexander Chadwick, Arnab Mukherjee, James Warren</td>
</tr>
<tr>
<td>2599</td>
<td>Physics-based nozzle design for optimal liquid metal jetting via multiphase flow simulation</td>
<td>Jongmin Seo, Svyatoslav Korneev, Christoforos Somarakis, Adrian Lew, Morad Behandish</td>
</tr>
<tr>
<td>2620</td>
<td>A mixed interface-capturing and interface-tracking CFD framework for modeling metal AM processes at different scales</td>
<td>Jinhao Li</td>
</tr>
<tr>
<td>2757</td>
<td>Nanoparticle-enhanced absorptivity of copper during laser powder bed fusion</td>
<td>Adrian Lew, Wei Cai, Wendy Gu, Philip DePond, Ottman Tertuliano, Manyaliboo Matthews, David Doan</td>
</tr>
<tr>
<td>3079</td>
<td>Space-time formulation for heat evolution in laser based powder bed fusion</td>
<td>Stefan Kollmannsberger, Philipp Kopp, Vijaya Holla, Jonas Grünwald, Victor Calo, Ernst Rank, Katrin Wudy</td>
</tr>
<tr>
<td>3114</td>
<td>A semi-analytical thermal modelling approach for multilaser powder bed fusion Keynote Lecture</td>
<td>Can Ayas, Yang Yang</td>
</tr>
</tbody>
</table>
3363 Extended One-dimensional Model for Efficient Mechanical Computation in Directed Energy Deposition Additive Manufacturing
Daniel Weisz-patrault, Laurane Preumont, Grégoire Allaire, Jean-Yves Hascoet

3380 An Extended Cellular Automaton Finite Volume Method for Process-Microstructure Simulation of Wire-based Additive Manufacturing
Yanping Lian

MS1003 Modeling, Simulation and Optimization of Functional Materials and Advanced Manufacturing
1789 Computational Inverse Design of Turing Pattern Inflatable Structures
Masato Tanaka, Yachio Wei, S. Macrae Montgomery, Liang Yue, Robert Caravay, Yuayng Song, Tsuyoshi Nomura, H. Jerry Qi

2020 Enhancing Flexural Properties of Additively Manufactured AISi10Mg Triply Periodic Minimal Surface Latticed Beams through Functional Gradation and Hybridization
Chukwugoze Ejele, Imad Barsoum, Rashid Abu AlRub

2216 Parametric Visco-Hyperelastic Constitutive Modeling of Functionally Graded Polymers Manufactured via Grayscale Masked Stereolithography
Iman Valizadeh, Oliver Weeger

2863 Two-way shape memory effect in semicrystalline networks: from modeling to 4D printing
Giulia Scalet, Nicoletta Inverardi, Stefano Pandini, Maurizio Toselli, Massimo Messori, Ferdinando A uncchio

MS1004 Additive Manufacturing of Polymers - Towards the Digital Twin
462 Macroscopic modelling and simulation of powder bed-based additive manufacturing of polymers
Dominic Soldner, Paul Steinmann, Julia Mergheim

1881 Part-scale Thermo-mechanical Modelling for The Transfusion Module in The Selective Thermoplastic Electrophotographic Process
Hao-Ping Yeh, Kenneth Meinert, Mohamad Bayat, Jesper Hattel

2920 Probabilistic Homogenization Analysis Considering Random Field of Microstructure in Resin Specimen Fabricated by FDM Method
Takayoshi Kikkawa, Sei-ichiro Sakata

MS1005 Shape Optimization for Large-Scale Problems
373 Structural optimization in ANSYS *Keynote Lecture
Giorgios Michailidis, Alexs Faure, Marc Albertelli

608 Large-Scale Industrial Shape Optimization Applications in Maritime Two-Phase Flows –Learning from the Adjoint–
Niklas Kuhl, Thomas Rung

770 Adjoint-Based Shape Optimization for Industrial Heat Exchangers
Tobias Kattmann, Ole Burghardt, Nicolas R. Gauger, Nijso Beishuizen

781 Basic Examinations of Non-parametric Shape Optimization Problems and their Applications to Real-World Problems *Keynote Lecture
Hideyuki Azegami
MS1101 Multiscale Modeling for Materials
995 Effects of Grain Sizes on Mechanical Behaviors of Nanoglasses
Chih-Jen Yeh, Yu-Chieh Lo, Chang-Wei Huang

1983 Development of atomistic simulation approach at diffusive time scale: an extension of cluster activation method to a continuous space
Ryo Yamada, Munekazu Ohno

2286 Ultra-large atomistic simulations and decentralized post-processing analysis for NiTi shape memory alloys under indentation process
Pei-Te Wang, Nien-Ti Tsou, Yi-Ming Tseng, An-Cheng Yang, Nan-Yow Chen

2290 The Optimization of Band Gap in Phononic Crystal and Acoustic Rectification Design using Genetic Algorithm
Shiang-chi Chang

MS1102 Computational Nanomechanics and Nanoscale Thermal Transport
2333 Vacancy Diffusion in Nickel Alloys under High Pressure through Atomistic Simulations
Bin Dong, Haifei Zhan, Chaofeng Lu

2366 Mechanical Properties of Filled Carbon Nanotubes with Greenhouse Gas Mixtures
Daniela Damasceno, Henrique Cezar, Teresa Lanna, Alessandro Kirch, Caetano Miranda

3358 Tensile Performance of Polymer Nanocomposite with Randomly Dispersed Carbon Nanothread
Chengkai Li

3426 Nanoscale Mechanical Energy Storage based on Spiral Spring *Keynote Lecture
Haifei Zhan, Gang Zhang, Chaofeng Lu, Yuantong Gu

MS1103 Composites, Bio-composites and Nanocomposites
612 Modelling Mechanical Properties of Nanocomposites with Aligned graphene Platelet
Jia-Lin Tsai, Lin-Shiang Su

1186 Bandgap property of a metaplate with multiple resonators
Jung-San Chen, Yi-Chen Wu, De-Wei Kao, Yu-Siang Huang

1480 Designing Composite Materials via Genetic Algorithm and Conditional Variational Autoencoder
Yi-Hung Chiu, Ya-Hsuan Liao, Jia-yang Juang

1506 Seed-pod-inspired Shape Transformation via 4D printing
Yu-chen Yen, Jing-Fang Cai, Ya-Chen Hsu, Jia-yang Juang

MS1104 Deformation Analysis of Carbon Nanomaterial with Lattice Defects
1010 Molecular Dynamics Simulation On Mechanical Properties and Deformation Mechanism of Graphene/Aluminum Composites
Mingyong Li

1803 Vibration Characterization of Multi-Walled Carbon Nanotubes with Different Lengths
Tang Lian Chen, LEI XIAO WEN

1977 Optimal Shape Design of Graphene Sheets by Introducing Lattice Defects *Keynote Lecture
Jin-Xing Shi, Xiao-Wen Lei

2794 Molecular Dynamics Simulation on Carbon Nanocoil with Flat Ribbon Cable Shape
Kisaragi Yashin, Takuma Go, Keishi Naito

MS1105 Modeling and Simulation of Materials under Harsh Environments
1571 Molecular Dynamics study of Bimetallic Core/Shell Nanoparticles for various Structural Properties in Heat-assisted and Pressure-assisted Sintering process
Juheon Kim, Hayoung Chung

2013 Durability and Aging of Composites under Environmental Deterioration and Fatigue
Zhiye Li, Michael Lepech

2210 Application of Isolated Element Method to Fracture Mechanics Analysis
Naoya Akagawa, Takeru Shimizu, Akiyuki Takahashi, Atsushi Kikuchi, Etsuo Kazama

2274 Fatigue Crack Growth Simulation of Multiple Surface Cracks using Discrete Dislocation Dynamics Method
Shinya Terahara, Akiyuki Takahashi, Nasr Ghoniem

2285 Virtual Dislocation Core Model for Dislocation Dynamics Simulation of Dislocation-precipitate Interactions
Asuka Kazama, Riku Sakata, Akiyuki Takahashi

2354 The analysis of pattern distortion in plasma etching process of silicon: Monte Carlo-based modeling and simulation
Seunghwan Oh, Jeonwoo Kang, Sanghuyk Yoo, Junghwan Um

2484 Plasma etching time prediction model of high aspect ratio pattern using molecular dynamics with data processing
Junghwan Um

2492 Interfacial properties of Liquid crystal polymer and MWCNT nanocomposite at high filler concentrations: A molecular dynamic study
Hondgdeok Kim, Joonmyung Choi

2493 Effects of powder trajectory for Y$_2$O$_3$-A$_2$O$_3$ interface formation during plasma spray coating: A multiscale analysis
Youngoh Kim, Joonmyung Choi

2844 Influence of dislocations on hydrogen retention in tungsten
Hyoungryul Park

2981 Quantitative Evaluation of Kink Strengthening in LPSO-type Magnesium Alloy Using Higher-order Gradient Crystal Plasticity
Yuichi Tadano

3020 Designing an open structure based on atomic-level structural configuration for higher elastic modulus
Sang Joon Lee, SangHuyk Yoo, Sunil Moon, Jeonwoo Kang

3066 Application of Machine Learning for Accurate and Efficient Simulation of Radiation Damage Formation in Metals for Nuclear Reactors
Takuji Oda, Sehyeok Park, Jonghyeon Park

3367 Reduction of Interstitial Mobility in W by Transition Metal Multicomponent Alloying
Younggak Shin
MS1106 Nanomechanics of defects in crystalline materials

729 Modeling and Numerical Analysis of Screw Dislocations based on Differential Geometry
Sigiet Hany Pranoto, Shunsuke Kobayashi, Ryuichi Tarumi

771 Atomistic Modelling of Fracture in iron via Gaussian Approximation Potential
Lei Zhang, Gábor Csányi, Erik van der Giessen, Francesco Maresca

891 Phase-field simulations on temperature-related behaviors of skyrmiions: Topological defect dynamics
Yu Wang, Shizhe Wu, Yuelin Zhang, Jinxing Zhang, Jie Wang, Takayuki Kitamura, Hiroyuki Hirakata, Takahiro Shimada

937 First-principles prediction of short-range ordered structures of solute atoms during aging in Al-Mg-Si alloys
Yasutaka Nomura, Hajime Kimizuka

957 Understanding power-law distribution in nanoindentation pop-in magnitude based on molecular dynamics simulation
Yuji Sato, Shuhei Shinzato, Takahito Ohmura, Takahiro Hatano, Jun Yamagimoto, Shigenobu Ogata

1519 Influence of Interface Properties and Misfit Dislocation Networks on The Stress Fields in Multilayered Material
Hideki Koqushi

1522 Description of hardening behaviour with slip transfer across grain boundaries of bicrystals using crystal plasticity FEM
Yoshiro Amaishi, Yoji Shibutani, Ikumu Watanabe

1752 Molecular dynamics study of stress generation in a DLC film deposited on Fe substrate
Noritsugu Kametani, Morimasa Nakamura, Kisaragi Yashiro, Tomohiro Takaki

1914 Activation barrier and critical stress of interactions between screw and edge dislocation with grain boundary in Cu
Li Li, Liqian Liu, Yoji Shibutani

2100 Effects of Dynamic Segregation on Grain Boundary Migration in High-entropy Alloys
Kohei Shiotani, Tomoki Niiyama, Tomosugou Shimokawa

2107 Effect of cross-section shape on critical resolved shear stress of crystal slip in nanorods: A molecular dynamics study
Emi Kawai, Atsushi Kubo, Yoshitaka Umeno

2109 Micropillar compression simulation of single crystal materials based on FTMP
Tepppei Shiotani, Tadashi Hasebe

2113 Study of Kink Strengthening of Polymer Materials with Mille-feuille Structure Based on FTMP Extended to Finsler Space
Koichiro Kudo, Tadashi Hasebe, Masanobu Mizuno

2131 Investigation of interaction between dislocations and obstacles in BCC iron by using neural network atomic potential
Hideki Mor, Mitsuhito Itakura, Masahiko Okumura, Tomohito Tsuru, Yoshinori Shinohara, Daiusuke Matsunaga

2187 Systematic Inference of Interfacial Properties of Pure Materials by Phase-field Data Assimilation using Molecular Dynamics Solidification Simulation Results
Kenta Nakai, Shinri Sakane, Munekazu Ohno, Yasushi Shibuta, Tomohiro Takaki

2198 FTMP-based model for the Bauschinger effect on FCC metal
Taisei Hashimoto, Tadashi Hasebe

2207 Reproduction Method of Mechanical Anisotropy Induced by Cold Rolling in Crystal Plasticity FE Simulation
Yusuke Yaginuma, Yoshiteru Aoyagi

2270 Atomistic Simulation of Nano-scale Drawing of Metallic Wires: Comparison on Plasticity Process between Fe and Mg Materials
Ken-ichi Saitoh, Shin'ichiro Mibu

2345 Multiscale modeling simulation of nano-micro metal fatigue
Yoshitaka Umeno, Atsushi Kubo, Emi Kawai

2404 Automated Atomistic Analysis of Interfacial Dislocations and Disconnections: Application to Martensitic Transformations
Nipal Deka, Alexander Stukowski, Ryan Sills

2454 Spherulite Microstructure Formation Simulation Based on Effect of Molding Conditions on Polyactic Acid
Hong Liqin, Koichi Tatsuno, Yoshiteru Aoyagi

2455 Atomistic Investigation of Hydrogen Influence on the Mobility of Edge Dislocations in Alpha-Iron
Sunday Oyinbo, Ryusuke Matsumoto

2486 FTMP-based Series of Simulations on Kink Deformation/ Strengthening In Mille-feuille Structured Mg
Kota Mizutani

2690 Room-temperature deformation behavior of semiconducting crystals
"Keynote Lecture"
Atsutomo Nakamura

2779 Alloy design from first-principles calculations of dislocation core in dilute and highly-concentrated alloys
"Keynote Lecture"
Tomohito Tsuji, Ivan Lobzenko

2813 Energetic Analysis of Homogeneous Nucleation of (10-12) Twin in Magnesium
"Keynote Lecture"
Daiake Matsunaka, So Yoshikawa

3013 Investigation of local stiffness inside T13AC2 (A = Al, Ga, In) MAX phase using first-principles atomic stress calculation
Noraki Kitagaki, Yoshinori Shinohara

MS1107 Modeling Mechanics of Materials with Voids

2094 Approximating Viscous Relaxation in a Hypereelastic Spherical Shell Subjected to Spherically Symmetric Deformation with Application to Modeling Foamed Rubber
Matthew Lewis, Bart Benedikt, Partha Rangaswamy

2243 Mesoscale Modeling of Carbon-Carbon Composite Manufacturing
Peter Creveling, Lincoln Collins, Scott Roberts

2946 Influence of the Pore Structural Parameters of Thermal Barrier Coating on its Modulus and Thermal Insulation
Fan Sun, Peng Jiang
MS1108 Topological Defects in Mechanics, Mathematics, Physics, and Beyond

385 Elasto-plastic evolution of single crystals driven by dislocation flow
Thomas Hudson, Filip Rindler

417 Geometric modelling of dislocation motion
Filip Rindler, Thomas Hudson

3409 Modeling Frictional Behavior in Rupture Dynamics using Field Dislocation Mechanics
Abhishek Arora, Amit Acharya, Jacobo Bielak

MS1110 Frontier in nano-scale graphene and AI-assisted design of graphene-like architect materials

661 Strain-induced Change of Adsorption Behaviour of Gas Molecules on Graphene: A first-principles Study
Meng YIN, Ken SUZUKI, Hideo MIURA

1658 Theoretical study on strain-controllable electron transport properties of dumbbell-shape graphene nanoribbon
Ken Suzuki, Qinqiang Zhang, Hideo Miura
MS1201 NON-CONVENTIONAL METHODS FOR SOLID AND FLUID MECHANICS (NMSFM)

414 Experimental analysis and numerical modeling utilizing fractional calculus of selected roofing felts
Bartosz Luczak, Wojciech Sumelka

610 Plastic Hinge Formation in the Framework of the Space-Fractional Beam Theory
Paulina Sierman, Wojciech Sumelka

1290 Model-order reduction of locally resonant metamaterial plates
Andrea Francesco Russillo, Giuseppe Failla

2406 Numerical analysis of Portevin-Le Chatelier effect using regularized large strain thermo-visco-plastic model
Marzena Mucha, Balbina Wcisło, Jerzy Pamin

MS1202 MODELING METHODS, SIGNAL ALGORITHMS AND MACHINE LEARNING FOR EFFECTIVE NON-DESTRUCTIVE TESTING AND STRUCTURAL HEALTH MONITORING

1750 Varying-pitch comb-shape DW sensor for UGW based SHM
Shuai Cao, Jing Xiao, Voon-Kean Wong, Shuting Chen, Kui Yao, Fangsen Cui

2002 Integrated Method of Inverse Isogeometric Analysis and Distributed Fiber Optic Strain for Monitoring Structure Deformation and Stress
Thein Lin Aung, Shohei Matsumoto, Ninshu Ma, Kazushige Nakao, Masanori Nakamachi, Nji Iwasa, Kinzo Kishida

2468 Variational Mode Decomposition of the Contact Ultrasonic Testing Results for Wood Quality Assessment
Mohsen Mousavi, Amir H Gandomi

2895 Ultrasonic Testing and Imaging of Out-of-plane Fiber Wrinkling in Multilayer Composites with Double-side Pulse-echo Methods
Zhuang Li, Menglong Liu

MS1203 Nonlocal models in computational mechanics: perspectives, challenges, and applications

442 Domain Decomposition Solvers for Nonlocal Equations
Xiao Xu, Christian Glusa, Marta D’Elia, John Foster

643 Investigation of wave propagation of a one-dimensional bi-material system
Xingjie Li, Pablo Seleson, Kelsey Wells, Hayden Pecoraro

2047 Fatigue crack propagation simulated by using a FEM-peridynamics coupled method
Mirco Zaccanetti, Tao Ni, Ugo Galvanetto

2099 Peridynamics Computations at the Exascale
Pablo Seleson, Sam Reeve

2795 Meshfree methods for fractional PDEs using Gaussian kernels
Xiaochuan Tian

2839 Anisotropic Peridynamics with pair-potentials
Wtu Diana

3278 Anomalous diffusion: Fractional models and application
Hong Guang Sun

3291 Peridynamic Modeling of the Dynamic Failure of Additively Manufactured Steel *Keynote Lecture
Stewart Silling, David Adams, Britanny Branch

3297 Extended Bond-based Peridynamics with Plasticity
Zhihui Zhu, Weiyan Li

MS1204 Combined finite-discrete element methods for multi-body dynamics and fracture mechanics

1141 Combined finite-discrete element methods for multi-body dynamics and fracture mechanics *Keynote Lecture
Ado Farsi

MS1205 Real World Modeling and Simulation for the realization of Human-centered Society 5.0

390 Creating Digital Twins for Human/Society and System/ Service with Uncertainty and Complexity
Tohru Hirano

822 Modelling Cognitive Bias in Safety using Bayesian Inference
Hideyoshi Yanagisawa

829 Digital Triplet for Recording and Reusing Engineering Processes Executed by Human Intelligence *Keynote Lecture
Yasushi Umeda

2503 Overview of the HEXAGON-TUS Joint Research: A Strategic Effort to Infiltrate Manufacturing Digital Twin Competency into Industry
Yuichi Matsuo, Kengo Asada, Hiroshi Watanabe, Kozo Fuji

2545 Real World Modelling beyond the Paradigm of Industrie4.0 and Society5.0
Teruki Ito

MS1206 Condition assessment of railway infrastructures

590 Drive-By Bridge Quasistatic Deflection Estimation Using Track Irregularities Measured on a Passing Train
Kodai Matsuoka

703 Method for Identifying High-order Local Vibration Modes of a Steel Railway Bridge
Koshiro Motoki, Kodai Matsuoka, Takuma Kushiya, Kyoyuki Kaito

704 Development of Pre-evaluation Method for Applicable Points of Non-Target Image Displacement Measurement
Haruki Yotsui, Kodai Matsuoka, Kyoyuki Kaito

913 Identification Method of Higher-Order Local Vibration Modes Using Multipoint Excitation and a Reciprocity Theorem
Takuma Kushiya, Kodai Matsuoka

3218 On situ vibration based structural health monitoring of a railway steel truss bridge: a preliminary numerical study
Lorenzo Bernardini, Claudio Somaichini, Andrea Collina

MS1207 Offshore Wind Power: Large Scale Modeling and Assesment for the Realization of Net-zero World

952 Consideration of the Behaviour of a Wind Turbine Wake Using High-Fidelity CFD Simulations
Koichiro Shibuya, Takanori Uchida, Masaki Inui, Zhiren Bai, Yoshihiro Taniyama

1317 Developments in Wind Turbine Wake Modeling based on Machine Learning
Masahide Yamazaki, Takanori Uchida, Kunihiko Hidaka, Rei Murakami, Yoshitaka Baba, Susumu Takakuwa

1583 A Study on Three-Dimensional Structure of a Wind Turbine Wake Using Computational Fluid Dynamics
Zhiren Bai, Takanori Uchida, Yoshihiro Taniyama, Yuki Fukatani, Masaki Inui
1611 Validation of Wind Prediction Accuracy of Wind Flow Simulation Based on LES Considering Atmospheric Stability at a Developing Offshore Wind Farm Affected by Topography. Keynote Lecture
Susumu Takahata, Takanori Uchida, Seiya Hasegawa, Keisicho Watanabe, Chikara Hemmi

2495 Design of wind turbine blades made of carbon fiber composite material and examination of reinforcing fiber types
Tomoki Yamazaki, Shogo Doi, Yoshiaki Abe, Tomonaga Okabe

MS1208 Industrial Application of Particle Methods

646 Particle Accretion Simulation Using Particle/Grid Hybrid Approach
Eiji Ishig, Tomoyuki Hosaka

775 A Particle-Based Simulation for Friction Prediction of Rubber on Snow
Hiroyuki Minaki

1439 Simplified Heat Transfer Modelling of Impingement Cooling Using Particle-Based Method
Jun’ichi Sato, Hiroki Shimura, Koji Fukudome, Mitsuyoshi Eiji, Makoto Yamamoto

1567 A study on Prediction of Water Discharge Performance for Showerhead Product Design
Chiaki Miyazawa

2377 Applications of Particle Method to Fine Particle Dispersion System
Shinichiro Yoshikawa, Kenta Chaki, Taku Ozawa

MS1209 Advanced Computing Technique and Artificial Intelligence for Realistic Social, Traffic and Economic Problems

1869 Hybrid Parallelization of Microscopic Traffic Simulator
Fumihiko Yoshida, Hideki Fuji, Shinobu Yoshimura

2122 Improvement of Dynamic Hybrid Traffic Simulation Model to Expand Its Applicability
Yo Imai

2778 The Effect of Air Traffic Simulator Fidelity on Flight Delay
Katsuhiko Sekine, Tomoaki Tatsukawa, Kota Fujii, Kota Kageyama, En Itoh

3039 Simulation Framework Development for Interaction between Electric Power Distribution System and Road Traffic Network
Hideaki Uchida, Shinya Yoshizawa, Katsuya Sakai, Kazuki Abe, Atsushi Hikita, Takashi Sueno, Yutaka Ota

MS1211 Particle and Finite Element Models for Interaction, Simulation and Statistical Design

383 Development of Efficient FEM Analysis Method using Equivalent 2D Model for Linear Friction Welding Analysis with High Tensile Strength Steel
Tomohiko Ariyoshi

900 Development of two-phase flow simulation using SPH Method
Masakazu Ichimiya

912 Development of Mold Filling Process Simulation considering Air Entrainment using SPH Method
Nobuki Yamagata, Masakazu Ichimiya

1730 A Doubly-Asymptotic FEM Algorithm for Estimating the Ultimate of a Sequence of Increasingly-Dense-Meshed Finite Element Solutions
Jeffrey Fong, Pedro Marcal, Robert Rainsberger, N. Alan Heckert, James Filliben

MS1213 Modeling & Simulation of Territorial Flows (Terrestrial/Geosphere) hydrologic/hydraulic flow modeling & simulation

2263 Modeling of Line-Sources for Seepage Flow Analysis Allowing Arbitrary Finite Element Meshing
Hideyuki Sakura, Toshiko Yamada

2893 A New Forest Evapotranspiration Model Accounting for the Spatial Variability of Rain-snow Fraction and Forest Conditions
Chen-Wei Chiu

2897 Integrated Watershed Modelling for Identifying Hydrogeological Condition and Groundwater Potential in the Nobi Plain, Japan
Satoshi Tomimori

2907 Uncertainty Analysis with Multiple Sets of Subsurface Properties for Land Subsidence Simulation using an Evolutionary Multimodal Optimization
Kento Akitaya

2915 Integrated Study on Groundwater Utilization System at Water Outage/shortage during post-Disasters and or Draughts: Watershed Modeling and Scenario Analysis
Taikan Oki

2921 Study of groundwater flow in Minami-soma City, Fukushima Prefecture, Japan
Fengrui Zhang, Shinji Takeuchi, Walter Illman

2937 Integrated Watershed Modelling for Groundwater Use at Emergency in the Kanto Plain, Japan
Souki Fukazawa

3041 Scenario studies for safe use of groundwater during the post-disaster period
Yukiko Hirabayashi

MS1214 Advanced Modelling for Automotive Applications in CASE Era

495 Simulation of Stretching Deformation of Films for Electronic Devices in Automotive Applications
Jhong Liu, Akio Higaki, Nobuyuki Komatsu, Satoru Takanezawa

589 Application of the CAE/ML technique for coupling analysis between vehicle structure and occupant safety
Shigeki Kojima, Koshio Kawahara, Tomohito Sono, Keisichi Yonehara

997 Generation of abuse simulation models of battery cells and battery packs
Robert Kießling, Martin Schwab

1587 A Detailed Simulation Model to Evaluate the Crash Safety of a Li-Ion Pouch Battery Cell
Benjamin Schaufelberger, Anja Altes, Andreas Trondl, Thomas Kisters, Clemens Fehrenbach, Pascal Matura, Michael May

1802 Investigation of Internal Deformation of Lithium-ion Battery and Simulation Model for Internal Short Circuit
Shinichi Amano, Hiromichi Ochra, Yu Yamaga, Nobuhiro Matoba, Yasuhiro Aoki
Deformation Analysis of Realistic Structure Using Implementation of the hyperelastic, hyperelastic plus Classification and overall-assessments of plasticity

A Comparison Study between Isogeometric Analysis and Practical examples using Unified Material Model Driver

MS1215 Image Processing, Discretization, and Simulation of As-Built Geometries

649 Deformation Analysis of Realistic Structure Using Virtually Laser-Scanned Point Cloud on Partial Surface

Hibaya Haraki, Yasunori Yusa, Hiroshi Masuda

3176 Credible, Automated Meshing of Images

Scott Roberts, Michael Kryger, Tyler LaBonte, Carianne Martinez, Chance Norris, Knsh Sharma, Lincoln Collins, Partha Mukherjee

MS1216 Solid Mechanics of Elastomers

508 Implementation of the hyperelastic, hyperelastic plus damage, and hyperelastic plus viscoelastic models in the UMMDr subroutine library

Kai Oide, Hideo Takizawa, Junji Yoshida, Takashi Terajima, Tomokage Inoue

515 Elastic-Plastic Constitutive Law of Deformation History Integral Type for Rubber Material of High-Damping Rubber Bearings

Takahiro Mori, Hideaki Kato, Nobuo Murota

751 Practical examples using Unified Material Model Driver for Rubber

Tomokage Inoue, Takashi Terajima, Hideo Takizawa, Kai Oide, Kentaro Suzuki, Toshikazu Yamanashi, Takashi Inoue, Tetsuji Ida, Masayasu Kishi, Cezar Diaconu

1656 Spectral Analysis on Surface Roughness in the Initial Wear Process of Tire Rubber and its Modeling

Hiro Tanaka, Soichiro Yanagihara, Takuto Nonami, Yuki Oku, Yoji Shibutani

2026 Multi-Scale Simulation of Filled Rubber Composite with Molecular Dynamics and Large Scale FEM Analyses

Hiroshi Kadowaki, Hare Tazawa

228 Co-Creative Design of Adhesives of Multi-materials by Shape Optimization under Multiaxial Stress Failure Criteria

Yang Xue, Hiro Tanaka, Yoji Shibutani

2761 Study on Evaluation of Viscoelastic Hyperelastic Properties of Polymer Foam Materials Using Voxel Finite Element Analysis

Yudai Yamashiro

2763 Homogeneous Finite Element Analysis of Polyurethane Foams using Kelvin Unit Cell

Yuuki Tahara, Akhiro Matsuda

MS1217 Analysis of Real World and Industry Applications: emerging frontiers in CFD computing, machine learning and beyond

1310 Development of a hybrid model for large-scale plant RUL prediction based on data and physical models

Elif Öztürk

1549 Optimizing the Energetic Efficiency in Autonomous Underwater Vehicle (AUV) Group by A Multi-Level Computational Model

Gem Li, Dmitry Kolomenskyi, Lei Duan, Ramiro Godoy-Diana, Benjamin Thira

2645 Improving prediction of wind loads on buildings using machine learning

Anina GLUMAC, Onkar Jadhav, Vladimir Despotović, Stéphane Bordas

3000 An efficient CFD model of an industrial scale CVD reactor allowing accurate coating thickness predictions

Paris Papavasileiou, Eleini D. Koronaki, Gabriele Pozzetti Pozzetti, Martin Kathrin, Christoph Czettl, Andreas G. Boudouvis, Stéphane P.A. Bordas

MS1218 Industrial Perspectives on Isogeometric Analysis and Design with Advanced Spline Techniques

752 A Comparison Study between Isogeometric Analysis and Finite Element Analysis for Nonlinear Inelastic Dynamic Problems with Geomiso DNL Software

Panagiotis Karakitsios, Ioannis Prentzas, Athanasios Leontaris, Alexandros Papakonstantinou

1166 An Alternative Approach for Inelastc Static Isogeometric Analysis and 3D Design with Advanced Spline Techniques with Geomiso TNL: a New Hybrid Cloud-based CAD/CAE Software

Panagiotis Karakitsios, Panagiotis Kolios, Athanasios Leontaris, George Karakos

1228 Modeling and Analysis of Real World and Industry Applications with Geomiso SEA: A New Hybrid CAD/CAE Software for Inelastic Static Isogeometric Shell Analysis and 3D Design with Advanced Spline Techniques

Vasiliki Tsiotoulid, Panagiotis Karakitsios, Panagiotis Kolios, George Mprellas

1228 Modeling and Analysis of Real World and Industry Applications with Geomiso ISA: A New Hybrid CAD/CAE Software for Static Isogeometric Analysis with Plate Elements and Advanced Spline Techniques

Konstantinos Gogos, Panagiotis Karakitsios, Konstantinos Mprellas

1324 Isogeometric Analysis of Seismic Response of Multi-storey Buildings Resting on Raft Foundation with EPS Geofoam Seismic Buffer

Spyridon Papadou, Panagiotis Karakitsios, George Mylonakis

1665 Robustness Criteria Analysis for an Isogeometric-based Robust Shape Optimization Scheme of a Disc-pad System under Dynamical Criteria

Achille Jacquemond, Frédéric Gillet, Sébastien Besset, Koji Shimoyama

2972 Isogeometric analysis of monoclinic 3D concrete printing Timoshenko beam

Huaikun Chen, Yu-Ching Wu

MS1219 Cyclic plasticity and viscoplasticity modeling for various alloys and components

523 Classification and overall-assessments of plasticity models

*K keynote Lecture

Koichi Hashiguchi
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>921</td>
<td>Accurate Spring-back Prediction with Subloading Surface Model</td>
<td>Motoharu Tateishi, Koichi Hashiguchi</td>
</tr>
<tr>
<td>1083</td>
<td>Modeling of Cyclic Hardening with the Effect of Maximum Plastic Strain under Pre-loading and Ratcheting</td>
<td>Nobutada Ohno, Hisashi Nakamoto, Yusuke Morimoto, Dai Okumura</td>
</tr>
<tr>
<td>2040</td>
<td>A unified constitutive model coupled with a continuum damage model for simulation of a broad set of elevated temperature responses</td>
<td>Tasnim Hassan, Nazrul Islam</td>
</tr>
<tr>
<td>2049</td>
<td>A microscopic cyclic plastic model for carbide-free bainite rail steel</td>
<td>Xiang Xu, Qianhua Kan, Guozheng Kang</td>
</tr>
<tr>
<td>2118</td>
<td>High-order strain gradient cyclic plastic model considering the interaction of microstructure evolution and size effect</td>
<td>Li Ding, Qianhua Kan, Guozheng Kang</td>
</tr>
<tr>
<td>2522</td>
<td>Interlaminar Fatigue Strength Prediction of CFRP Based on Inelastic Two-Scale Analysis Method</td>
<td>Masayoshi Akaza, Tetsuya Matsuda, Kazuki Izumizaki, Gai Kubo, Masahiro Hojo, Masashi Abe, Naoki Monta, Nobuhiko Yoshikawa</td>
</tr>
<tr>
<td>2848</td>
<td>Subloading Surface Constitutive Model for Soils and Implementation into General Purpose CAE Code</td>
<td>HIROSHI Watanabe, Koichi Hashiguchi, Motoharu Tateishi</td>
</tr>
<tr>
<td>3045</td>
<td>Very Low Cycle Fatigue Crack Growth Simulation in a Pipe, Part I: Appropriate Cyclic Hardening Modeling</td>
<td>Jin-Ha Hwang, Yun-Jae Kim, Jin-Weon Kim</td>
</tr>
<tr>
<td>3191</td>
<td>Very Low Cycle Fatigue Crack Growth Simulation in a Pipe, Part II: Validation using Experimental Data</td>
<td>Yun-Jae Kim, Jin-Ha Hwang, Jin-Weon Kim</td>
</tr>
<tr>
<td>3208</td>
<td>Energy-Based Thermo-Mechanical Fatigue Life Prediction of Ferritic Stainless Steel for Exhaust Manifold</td>
<td>Jae-young Jeong, Jong-Min Lee, Yun-Jae Kim, Deok-Chan Ahn, Myeong-Woo Lee</td>
</tr>
<tr>
<td>3416</td>
<td>Constitutive behaviour of viscoplastic materials under a wide range of strain rates and elevated temperatures</td>
<td>Xu Long, Tianxiong Su, Yuntao Hu</td>
</tr>
<tr>
<td></td>
<td>MS1220 HPC application on turbulent wind over urban model represented by individual shape of buildings</td>
<td></td>
</tr>
<tr>
<td>2063</td>
<td>Large Eddy Simulation for Fluid Structure Interaction of H/BD=5 Rectangular High-Rise Building</td>
<td>Yasuaki Ito, Tomomi Yagi, Kyohi Noguchi</td>
</tr>
<tr>
<td>2319</td>
<td>Wind Pressure Characteristics of High-rise buildings in Middle and High-height Urban Areas Spread over Local Terrain</td>
<td>Koji Kondo, Hidenori Kawai, Tetsuro Tamura, Keigo Nakajima</td>
</tr>
</tbody>
</table>
MS1301 Computational structural design for architecture and civil engineering

577 Non-parametric design of free-form shells with specified horizontal reaction forces
Makoto Ohsaki, Riree Takeoka, Yusuke Sakai

598 Form-finding of Discrete Surfaces with Given Edge Lengths by using Force Equilibrium Method
Jingyao Zhang, Makoto Ohsaki

1262 The Reason Solving a Tension-compression Mixed Shell Form-finding is so Difficult and How to Solve it
*Keynote Lecture
Masaaki Miki

1276 Topology Optimization of Structural Frames Considering Various Non-Mechanical Performance Formulated as MISOCP
Naoto Okuzono, Shinshoku Fujita

1504 Material Cost Minimization Problem for Aluminum Alloy Beam using Beam String Method Structure
Shota Mizuno, Yuki Chikahiro, Shigeru Koyama

1647 The Use of Three Solvers: IPOPT, SNOPT and MMA to Optimize the Shape of the Coating
Evgenia Ermakova, Marina Rynkovskaya

1913 Optimization Problems with A Density-based Clustering Algorithm
Masaki Tetsu, Yohei Yokosuka

2175 Generating Topology-Optimized Shapes with GAN: Design support framework providing diverse shapes
Tomohiro Miyake, Yohei Yokosuka

2731 A Deep Convolutional Neural Network Approach as Surrogate Model for Topology Optimization
Xiangrui Kong, Yu-Ching Wu

MS1302 Model Learning and Optimization for Nonlocal and Fractional Equations

2247 Development, Learning and Optimization of Viscoelastic Laminated Composite Beams
Hong Wang

2637 Learning nonlocal operators for heterogeneous material modeling
Huaqian You, Yue Yu, Quinn Zhang, Colton Ross, Chung-Hao Lee

2754 Nonparametric learning of kernels in nonlocal operators
Fei Lu, Qingci An, Yue Yu

2838 Meta-Learning for Heterogeneous Materials: A Provable Nonlocal Operator Regression Approach
Yue Yu, Huaqian You, Lu Zhang

3035 Augmenting Scientific Data using GANs
Shuote Chen, Youzuow Lin, Xiu Yang

3177 Leveraging Machine Learning for Subsurface Modeling with Fractional-Order PDEs
Mamikon Gulian

MS1303 ANALYSIS AND DESIGN OF STRUCTURAL DYNAMICAL SYSTEMS UNDER UNCERTAIN CONDITIONS

717 Probabilistic Response Analysis of Nonlinear MDOF Dynamic Systems under Combined Multiplicative and Additive Excitations
Hanshu Chen, Dixiong Yang, Guohai Chen

990 Minimizing the Probability of Failure of Stochastic Linear Dynamical Systems via a Decoupled Approach
Marcos Valdebenito, Matthias Faes

2000 High Dimensional Bayesian Updating of Structural Dynamic Models with Reliability Methods
Hector Jensen, Dantko Jerez, Michael Beer, Cristobal Figueroa

2586 Robust Design Optimization Under Uncertain Structural Parameters by Stochastic Simulation-Based Approach
MOHD AMAN KHALID, Sahil Bansal

3402 Bayesian Model updating of Linear dynamic systems using complex modal data
Eammon Henikish, Sahil Bansal, Rajpurohit Kiran

MS1304 Optimization Method and Application

449 Toward Concurrent Multiscale Topology Optimization for High Heat Conductive and Light Weight Structure
*Keynote Lecture
Musaddiq Al Ali, Masatoshi Shimoda

503 Concurrent Multiscale Topology Optimization for Designing Displacement Inverter
Musaddiq Al Ali, Masatoshi Shimoda

582 Application of Genetic Algorithm for Parameter Design of Generative Adversarial Networks
Bate He, Eisuke Kita

920 Performance Evaluation of a Plate-fin Heat Exchanger Core Designed Using Localized Topology Optimization
Mario Petrovic, Kenichiro Fukushima

933 A Topology Optimization Method using Differential Evolution based on RBF Networks
Yasutoshi Tsukuda

1259 Application of Grammatical Evolution for Design of Control Program of Robot
Firdaus Sukarman, Ryoma Sato, Eisuke Kita

2096 Hierarchical Polynomial Wavelet Decomposition for Full-Field Material Calibration
Matthew Kury

2108 Stacking Sequence Optimization for Ply Drop-off Laminated Composite Considering Some Empirical Constraints
Nozomu Kogiso, Taishi Kitazawa

2193 Multi-objective optimization for minimizing weldline and cycle time using rapid heating cycle molding with heater system
Shogo Tsutita, Satoshi Kitayama, Masahiro Takano, Yusuke Yamazaki, Yoshihiko Kubo, Shuji Aiba

2331 Prediction for Behavior of Underground Structures during Construction Phase Using Data Assimilation
Yasuhsa Aono, Hideyuki Sakuari, Shinya Yamamoto
MS1305 New Trends in Topology Optimization

1050
Denoise in Reconstructed Point Cloud of Branch-Shaped Complex Structures using Clustering
Riku Murata, Masayuki Nakamura, Yuto Harada

1052
Effect of Shade on Optimal Placement Results of Photovoltaic Arrays
Fuma Okazawa, Masayuki Nakamura, Kento Tanaka

1054
Topology Optimization of Structures Reinforced with Fiber Considering Stress
André Luis Ferreira da Silva, Ruben Andres Salas, Emílio Carlos Nelli Silva

1057
Topology Optimization of Fluid-structure Interaction Problems with 2D Swirl Flow and Turbulence Models

1075
Simultaneous Design of Rotating and Stationary Structural Parts of Fluid Devices by Topology Optimization
Eduardo Moscatelli, Diego Alonso, Luis Sá, Renato Picelli, Emílio Silva

1162
Topology Optimization of Multilayered Acoustic-Poroelastic-Elastic Structures for Sound Attenuation
Rodrigo Pereira, Marcela Anaya-James, Renato Pavanello

1175
Proportional topology optimisation with maximum entropy-based meshless method for minimum compliance and stress constrained problems
Zahur Ullah, Basir Ullah, Wajid Khan, Siraj-ul-Islam

1283
Derivation of effective permittivity using machine learning and its application to collimator design
Changyong Kim, Mi Kyu Oh, Min Kook Jung, Jeonghoon Yoo

1565
Level-set based topology optimization of a microfluidic mixing problem
Naoyuki Ishida, Hao Li, Tsuguo Kondoh, Kozo Furuta, Kazuhiro Izui, Shinji Nishiwaki

1593
Multi-material topology optimization of an eigenfrequency problem
Nari Nakayama, Hao Li, Pierre Jolivet, Kozo Furuta, Shinji Nishiwaki, Kazuhiro Izui

1640
Basic study on PDE-based thickness constraint of topology optimization
Kota Sakai, Yuki Noguchi, Takayuki Yamada

1687
Including Anisotropy of Additively Manufactured Bulk Materials in Topology-Optimized Designs
Josephine Carstensen, Hajin Kim, Jackson Jewett

1821
Adaptive mesh refinement in level set based body-fitted topology optimization
Chiara Nardoni, David Danan, Nicola Ferro, Simona Perotto, Aminie Sekourane

1875
Inverse Design of Thermal Conductivity Tensor Based on Free Material Optimization
Yuki Sato, Teppei Deguchi, Tsuyoshi Nomura, Atsushi Kawamoto

1940
Topology Optimization of Thin-Walled Structures with Body Conformal Adaptive Meshing
Hiroti Kobayashi, Yuqing Zhou, Tsuyoshi Nomura
1942 FFT-based Multi-scale Topology Optimization with High-resolution Microstructure
Masayoshi Matsum, Hiroya Hoshiba, Hiroki Ogura, Koji Nishiguchi, Junji Kato

1943 Large-Scale Topology Optimization of Unsteady Incompressible Flow with Building-Cube Method
Ryohei Katsumata, Koji Nishiguchi, Tokimasa Shimada, Hiroya Hoshiba, Junji Kato

1989 Design of Channels under Turbulent Subsonic Compressible Flow Using Topology Optimization
Emilio Carlos Neib Silva, Luis Fernando Garcia Rodriguez, Diego Hayashi Alonso

2189 Topology optimization for maximizing fracture resistance using crack phase-field and reaction-diffusion-based level-set approach
Hiroyasu Miura, Jike Han, Hao Li, Kozo Furuta, Tsuguo Kondoh, Shinji Nishiwaki, Shuii Moriuchi, Kenjiro Terada

2527 Applications of the Model Order Reduction Using Variational Autoencoder to PDE-Constrained Topology Optimisations
Hitoki Ishikawa

2682 Topology Optimization of Continuously Variable Stiffness Carbon Fiber Reinforced Plastic (CFRP) Structures with Level Set Method
Yanan Xu, Chi Wu, Jianguang Fang, Grant Steven, Qing Li

2710 Topology optimization for mass minimization design of multi-material structures using p-norm function
Sungchoon Lim, Kozo Furuta, Kazuhiro Izu, Shinji Nishiwaki

2712 Structural Optimization Method Based on the Allen-Cahn Equation
Ryota Matsubara, Kozo Furuta, Tsuguo Kondoh, Kazuhiro Izu, Shinji Nishiwaki

2922 Multiscale Topology Optimization of Buckling-resistant Structures *Keynote Lecture*
Federico Ferrari, Ole Sigmund

2948 AuTONR: Topology Optimization via Neural Representation and Automatic Differentiation
Zeyu Zhang, Xiaochuan Chen, Wen Yao, Yong Zhao, Yu Li, Bingxiao Du, Wei Peng, Ying Lu

3104 Design of large displacement compliant airfoil through stress constrained topology optimization
Daniel De Leon, Carlos Eduardo de Souza

3224 Total Traction Equilibrium in Fluid-Structure Interactions with Porous Media
Mohamed Abdelhamid, Aleksander Czekanski

MS1306 Topological Design Optimization of Structures, Machines and Materials

705 Topology optimization of biodegradable composite structures with tunable time-changeable stiffness
Heng Zhang, Xiaohong Ding, Hao Li, Shipei Xu, Pengyun Duan, Wanyue Xiong, Akihiro Takezawa

1827 Topology optimization for transient fluid-structure interaction
Gil Ho Yoon

1919 Considerations on the Updating Process in Density-based Topology Optimization Using the Modified Optimality Criteria Method
Masayuki Kishida, Takahiko Kuralashki

2867 Topology and orientation optimization of fiber-reinforced composite structures considering fiber fabrication uncertainty
Shuya Nozawa, Akihiro Takezawa

3354 Flexoelectric Nanostructure Design using Explicit Topology Optimization
Wenfeng Zhang, Xiaoye Yan, Sungkie Youn, Xu Guo

3383 Design Optimization and Mechanical Property of Composite Materials with Embedded Cables
Rui Hu, Zehua Jin, Wenchao Ma, Junhui Meng

3386 Arbitrary Negative Poisson’s Ratio Metamaterial Microstructure Design by Topology Optimization Method
Zehua Jin, Rui Hu, Wenchao Ma, Junhui Meng

3410 Topology Optimization of Thermoelectric Devices with Mechanical Constraints
Guillermo Reales Gutiérrez, Fred van Keulen, J.F.L. Goosen, Adolf Bornheim

MS1307 Machine Learning and Uncertainty Quantification for Materials Design

1183 Inverse Design of Face-Like 3D Surfaces via Multi-material 4D Printing
Yu-Ting Huang, Yi-Xian Xu, Yi-Hung Chiu, Yu-Chen Yen, Jia-Yang Juang

MS1308 OPTIMIZING CIVIL STRUCTURES DESIGN – HOW TO ADDRESS MULTIMATERIAL, MULTICRITERIA AND MULTIPHYSICS PROBLEMS TO REDUCE THE GLOBAL CARBON FOOTPRINT

3132 Solid Mechanics within a Multi-Physics Modelling System for Analyzing Fusion Reactor Blanket Designs
Jerome Solberg, Karolyna Borowieck, Arpan Sicar, Jin Whan Bae, Vittorio Badalassi

MS1309 Recent progress in topology optimization and its applications

519 An Evolutionary Approach to Stress-constrained Topology Optimization
Liang Xia

767 3D Topology Optimization of an Axisymmetric Wheel and Axle Structure with Orthotropic Constitutive Properties
Lee Alacoque, Kai James

779 Thermostructural Topology Optimization of a Heat Exchanger with Stress Constraints
Waheed Bello, Kai James

1081 Length Scale Control Schemes for Bi-directional Evolutionary Structural Optimization Method and its Application to Shell-infill Structures
Wenke Qiu, Liang Xia

1216 Topology Optimization of Piezoelectric Energy Harvesters for Output Power under Harmonic Loads
Meng He, Liang Xia

1451 Topology Optimization of Duplex Structure considering Interface Debonding
Jiaxin Zhou, Ikumu Watanabe, Takayuki Yamada
Concurrent Topology Optimization of Two-Scale Transient Heat Analysis Considering Size Effect
Narueeteph Sukulthanasorn, Mao Kurumata, Junji Kato, Kenjiro Terada

Comparative study of Topology Optimization of Thermoelastic Structures considering Finite Strain condition
Byeonghyeon Goh, Hayoung Chung

Concurrent Topology Optimization of Parts and Supports for Additive Manufacturing Considering Thermal Deformation
Yichang Liu, Mingdong Zhou

Microstructure Optimization for One-Dimensional Nonlinear Constitutive Laws Under Tensile Loading
Niai Machider, T Alicia Kim, Nicholas Boechler

Density-based Multi-material Topology Optimization Method Considering Strengths of Both Solids and the Interface
Saki Watanabe, Hiroya Hoshiba, Junji Kato

On Geometrically Nonlinear Stability Constraints in Topology Optimization
Peter Dunning

A Geometric Feature-Mapping Approach to Buckling and Fat-Safety Criteria in Topology Optimization
Hollis Smith, Julian Norato, Joshua Deaton, Raymond Kolonay

Optimal Design for Continuous Fiber Layout of 3D-printing FRP
Takahito Moribe, Hiroya Hoshiba, Junji Kato

Topology Optimization for Unsteady State Thermal-Fluid Problems
Keisuke Takaara, Hiroya Hoshiba, Shinuke Takase, Koji Nishiguchi, Junji Kato

Multi-material Topology Optimization Model using the Multi-phase-field Method
Satoshi Sugimoto, Shinji Sakane, Tomohiro Takaki

Topology Optimization Incorporating the Adjoint Lattice Boltzmann Method for Steady and Unsteady Natural Convection Problems
Yuta Tanabe, Kentaro Yaj, Kuniharu Ushijima

Topology Optimization of Finite Strain Dynamic Structural Problem
Takumi Sugiwara, Hiroya Hoshiba, Junji Kato

Preliminary Study on Multi-material Dynamic Topology Optimization based on Generalized Maxwell Model
Guangwei Liu, Hiroya Hoshiba, Koji Nishiguchi, Junji Kato

Deformation Clustering Methods for Topologically Optimized Structures under Crash Load based on Displacement Time Series
Yasuuki Shimizu, Nivesh Dommaraju, Mariusz Bujny, Stefan Menzel, Markus Ohte, Fabian Duddeck

Microstructure Control through Topology Optimization for Additive Manufacturing
Vibhas Mishra, Can Ayas, Matthijs Langelaar, Fred van Keulen

A Practicable Two-material Interpolation Method for Isotropic Brittle-ductile Topology Optimization
Hiroya Hoshiba, Mutsuki Fujisawa, Junji Kato

Topology optimization with spatially varying length scale
Oded Amir, Moshe Anki, Pinhas Bar-Yoseph

Topology Optimization of 3D-Welded Frame Structures with regards to Manufacturing Cost
Hongye Gu, Julian Norato

Structure Topology Optimization of Asymmetric Material with Prescribed Eigenfrequency Band
Haipeng Jia, Ruisheng Yu, Jingxuan Dou, Misra Anil

Extended Level Set Based Multi-Material Topology Optimization Method Using Reaction-Diffusion Equation, Applied to Elastic and Thermal Problems
Masaki Noda, Yuki Noguchi, Takayuki Yamada

Considering Failure in a Concurrent Topology and Composite Laminate Optimization by means of a Gradient-based Algorithm
Lander Vertonghen, François-Xavier Irisarri, Boris Desmorat, Dimitri Bettebghor

Shape Optimization of Cellular Structures Using a Reduced Order Model
Hernan Villanueva, Daniel White, Jun Kudo, Charles Jekel, Daniel Tortorelli, Seth Watts

Integrated DIC Based Identification of Local Elastic Properties of Discontinuous Long-Fiber Composites
Armand Touminet, Pierre Kerfriden, Sabine Cantournet, Victor Fabre, Jean-Christophe Rietsch

Adaptive Multi-Fidelity Surrogate Model Assisted by Gaussian Process Regression for Design Optimization of Variable Stiffness Composites with Fiber Steering Constraints
Haichao An, Byen D. Youn, Heung Soo Kim

Topology and fiber orientation optimization of variable-stiffness composites using lamination parameter interpolation
Elena Raponi, Gokhan Serhat, Carola Doerr, Fabian Duddeck

On the Design of Artificial Neural Networks for solving Statistical Inverse Problems in Computational Biomechanics
Florent Pled, Christophe Desceilers

Identification of a Phase Field Model for Brittle Fracture in Random Heterogeneous Elastic Media
Idris Satgun, Florent Pled, Christophe Desceilers

A structural optimization strategy with micro-architected materials and uncertainties
Chenchen Chu, David Dureisseix, Beatrice Favieron, Nawfal Blal

Semi-supervised deep learning of constitutive relations
Musiu Duvallard, Loic Giraldi, Thomas Helfer
<table>
<thead>
<tr>
<th>MS1315 Engineering Metamaterials: Rational Design and Additive Manufacturing</th>
</tr>
</thead>
<tbody>
<tr>
<td>787 Frequency-adaptable Elastic Metasurface with Multiple Functionalities</td>
</tr>
<tr>
<td>Zoe Yaw, Weijian Zhou, C. W. Lim</td>
</tr>
<tr>
<td>1232 Optimization of Structures with Self-supporting Enclosed Voids and Build Orientation for Selective Laser Melting</td>
</tr>
<tr>
<td>Yu Wang, Enli Lyu, Jiaming Guo, Zhixiong Zeng, Yanhua Liu</td>
</tr>
<tr>
<td>1303 Multiscale topology optimization for electromagnetic metamaterials by using high-contrast homogenization method</td>
</tr>
<tr>
<td>Naoki Murai</td>
</tr>
<tr>
<td>1529 Effective Stiffness, Strength, Buckling and Anisotropy of Foams Based on 21 Triply Periodic Minimal Surfaces</td>
</tr>
<tr>
<td>Jide Oyebanji, Dong-Wook Lee, Kapil Krishnan, Sumaya Altamimi, Mohamed Al Teneiji, Rashid Al-Rub</td>
</tr>
<tr>
<td>1974 Robust topology optimization for thermoelastic structures with random and interval hybrid uncertainties</td>
</tr>
<tr>
<td>Jing Zheng, Hong Chen, Chao Jiang</td>
</tr>
<tr>
<td>2288 Topology Optimization for Pentamode Lattice Metamaterials</td>
</tr>
<tr>
<td>Zhen Luo, Zuyu Li</td>
</tr>
<tr>
<td>2441 Intracranial Acoustic Field Optimization of a Point-Like-Scatterers-Arrayed Transcranial Lens</td>
</tr>
<tr>
<td>Tsuyoshi Ueta</td>
</tr>
<tr>
<td>2462 Multiscale Optimization of Resonant Frequencies for Lattice-Based Additive Manufactured Payload Interfaces</td>
</tr>
<tr>
<td>Morgan Nightingale, Robert Hewson, Matthew Santer, Martin Muir</td>
</tr>
<tr>
<td>2544 Two-scale Concurrent Structural Topology Optimization Considering the Microstructural Connectivity</td>
</tr>
<tr>
<td>Pai Liu, Zhan Kang, Yangjun Luo</td>
</tr>
<tr>
<td>2676 Hierarchical Isotropic Microstructures</td>
</tr>
<tr>
<td>Xue Yu, Yiqiang Wang</td>
</tr>
<tr>
<td>2688 A novel functional structure with compression-torsion bistable by bi-material 3D printing</td>
</tr>
<tr>
<td>Wenjun Wu, Zhan Kang, Yiqiang Wang</td>
</tr>
<tr>
<td>2726 Negative thermal expansion metamaterials with high energy absorption properties based topological optimization and bionics design</td>
</tr>
<tr>
<td>Hongling Ye, Xing Zhang, Nan Wei, Zhen Luo</td>
</tr>
<tr>
<td>2760 Design of Metastructure for Piezoelectric Energy Harvesting via Isogeometric Shape Optimization</td>
</tr>
<tr>
<td>Shuai Yao, Patricio Peralta-Braz, Brendon O'Young, Mehrisadat Makki Alamdari, Rafael D. Ruiz, Elena Atroshchenko</td>
</tr>
<tr>
<td>2868 Phononic structures for enhancing the accuracy of ultrasonic flowmeters</td>
</tr>
<tr>
<td>Sabiju Valiya Valappil, Fred van Keulen, Hans Goosen, Alejandro Aragon</td>
</tr>
</tbody>
</table>
MS1401 PSE (Problem Solving Environment)

1074 Construction of the Education Tools for the Computer Programming - by the use of Problem Solving Environment – Shinji Hioki

1976 VR as an Alternative to Social Studies Field Trip - From Kinugawa Elementary School VR Field Trip Koadi Tsushima, Hideo Miyachi

2769 Object Classification and Segmentation Based on Deep Learning Using Underwater Mapping Data Hiroshi Okawa, Shigeyuki Omoto, Shota Yagi, Takashi Miyamoto, Kazuo Kashiyma

2786 Visualization of Flow Simulation Based on AR Using GNSS Data Maishiro Suzuki

2804 Tsunami Evacuation Simulation Considering Building Collapse and Fire Spread Utsaraka Toyama, Manami Nakamura, Kazuo Kashiyma

MS1402 Software Design and Implementation for Next-Generation Parallel Architectures

1765 Addressing Computational Load Imbalance in Asynchronous Distributed Contact Problems Using DARMA/vt Nicolas Morales, Jonathan Lilflander, Ulrich Hetmaniuk, Reese Jones

2284 Optimizing Open-Source CFD Software on a GPU Supercomputer Yosuke Oyama, Koichi Shirahata

2320 Performance Analysis of 3D Ground Application for Next-Generation Supercomputers AMIR HADERBACHE, Ohno Yoshinobu, Takahiro Miyashiro, Yasuhiro Goto, Koichi Shirahata, Hiroshi Okuda

2401 Discretizations of high-frequency wave propagation problems on next-generation computing architectures Julia Plewes, Gregory Bunting, Jerry Rouse, Clark Dohrmann

2664 Ratel - a Portable and Scalable Package for Solid and Fluid Mechanics Karen Stengel, Jeremy Thompson, Corey Murphey, Leila Ghaffari, Rezgar Shakeri, Jed Brown

2696 Ensemble Computations on Heterogeneous Supercomputers Gianluca Iaccarino

3321 MTwin: Porting and customizing the computational mechanics solver MSolve for HPC execution in Microsoft Azure George Stavrakakis, Theofilos Christodoulou, Stefanos Pyrialakos, Vella Tsiotoudi, Vissarian Papadopoulos

MS1403 Advanced HPC for Eigenvalue Problems and Beyond

575 Matrix-Less Eigensolver for Large Structured Matrices Giovanni Barbarino, Melker Claesson, Sven-Erik Ekstrom, Carlo Garoni, David Meadon, Hendrik Speleers

585 On the Matrices in B-spline Collocation Methods for Riesz Fractional Equations and their Spectral Properties Marialaura Pacor, Marco Donatelli, Carla Manni, Hendrik Speleers

1342 Optimization Methods for One Dimensional Elastodynamics Theodoros Katsaounis, Grigorios Kounadis, Ioanna Mousikou, Athanasia Tasianas

1414 First order least-squares formulations for eigenvalue problems Fleuranne Bertrand

1483 SoftFEM/SoftIGA for Eigenvalue Problems Quanling Deng, Alexandre Ern, Victor Calo

2426 VEM Discretization of PDE Eigenvalue Problems: Effect of the Stabilization Parameters Lucia Gastaldi, Linda Alzabene, Daniele Boffi, Andreas Dedner

3412 Design of Filters Consist of Resolvents with Real Shifts for Solving Eigenpairs with Lowest Eigenvalues Hiroshi Murakami

MS1404 Progress and Challenges in Extreme Scale Computing and Data

630 Auto-tuning for Computation Accuracy and Power Consumption by ppOpen-AT Takahiro Katagiri, Shohei Yamanashi, Hisashi Yashiro, Toru Nagai, Satoshi Chihira

901 Challenges of Heterogeneous Coupling Takashi Arakawa, Shinya Sumimoto, Hisashi Yashiro, Kengo Nakajima

2481 h3-Open-BDEC: Innovative Software Infrastructure for Scientific Computing in the Exascale Era by Integrations of (Simulation+Data+ Learning) *Keynote Lecture Kenko Nakajima, Takeshi Ishiwata, Hisashi Yashiro, Hiro michi Nagao, Takeshi Shimokawabe, Hiyora Matsu, Takeshi Ogita, Takahiro Katagiri

2504 A new version of AINV preconditioning simplified by using nonzero element positions of a coefficient matrix Ken ko Suzuki, Takeshi Fukuya, Takesh i Ishiwata

2585 Performance improvement of immersed boundary-lattice Boltzmann Method on multiple GPUs Akira Hatakeyama, Takashi Shimokawabe

2840 Improved Initial Approximations for Pressure Correction Schemes Alexander Magro, Kengo Nakajima

2874 Performance Optimization Of Lattice Boltzmann Method On A64FX Takuro Omori, Takashi Shimokawabe

MS1405 HPC-BASED SIMULATIONS AND DATA SCIENCE FOR THE WIDE INDUSTRIAL REALM: AEROSPACE, AUTOMOTIVE, BIOMEDICAL, CONSTRUCTION, HEAVY...

711 Voxel topology optimization of vehicle frame structure subject to multiple loading using building cube method framework Yuji Wada, Tokimasa Shimada, Koji Nishiguchi, Shigenobu Okazawa, Makoto Tsukbura

1454 Three-dimensional Flow Field Decomposition with Massively Parallel Distributed Learning on Fugaku Kazuto Ando, Keji Onishi, Bale Rahul, Akiyoshi Kuroda, Makoto Tsukbura
1572 Flow Field Data Mining of Automobile Models with Pareto-Optimal Aerodynamic Shape Using Proper Orthogonal Decomposition
Takui Nakashima, Yusuke Nakamura, Keigo Shimizu, Takenori Hiracka, Gentaro Hamada, Takahide Nozawa, Akira Oyama, Makoto Tsubokura

2016 Super-simulation of Coal Gasification Facility on Fugaku
Shinobu Yoshimura, Hiroaki Watanabe, Ryoichi Kurose, Tomonori Yamada, Shigeki Kaneko, Junya Yoshida, Kiyoru Yodo

1110 Implementation of the Mother-leaf Method on GPU-accelerated AMR Code for Phase-field Computation of Dendrite Growth
Ryosuke Suzuki, Shinji Sakane, Tomohiro Takaki

1216 Real-World Aerodynamics Assessment for Road Vehicle Development Realized on the Supercomputer “Fugaku”
Akinori Yoshikawa, Ryo Miyazaki, Rahul Bale, Kunihiro Yoshihatake, Fortunato Nucera, Takashi Yoshino, Makoto Tsubokura

2130 Lattice Boltzmann Simulation with Actuator Line Model for Tidal Current Turbines on Multiple GPUs
Seiya Watanabe, Changhong Hu

2135 A Novel Method to Impose Velocity Boundary Conditions for Eulerian Fluid-structure Interaction Scheme Using Lagrangian Marker Particles
Tokimasa Shimada, Koji Nishiguchi, Rahul Bale, Shigenobu Okazawa, Makoto Tsubokura

2174 Study on Foam Formation using Multi-phase-field Lattice Boltzmann Method with Adaptive Mesh Refinement
Yos Sitompul, Aoki Takayuki, Seiya Watanabe, Kenta Sugihara, Tomohiro Takaki

2184 Acceleration of Phase-field Data Assimilation using Multiple-GPU Parallel Computing to Infer Interfacial Properties of Zinc Alloys
Koki Nagao, Shinji Sakane, Tomohiro Takaki

2213 Large-scale Simulation for a Real Driftwood Disaster by Using LBM with AMR
Dawei Shen, Takayuki Aoki, Seiya Watanabe, Shuji Moriguchi, Shinsuke Takase, Masaaki Sakuraba

2313 A Study of Phase-Field Parameters in Gas-Liquid Two-Phase Flow Problems
Kenta Sugihara, Naoyuki Onodera, Yasuhiro Idomura, Susumu Yamashita

2374 Tree Cutting Approach for Reducing Communication in Domain Partitioning of Tree-based Block-structured Adaptive Mesh Refinement
Yuta Hasegawa, Takayuki Aoki, Hiromichi Kobayashi, Yasuhiro Idomura, Naoyuki Onodera

2501 A Weakly Compressible Flow Computation of Liquid Film with interface-adapted AMR method
Tongda Lian, Shintaro Matsushita, Takayuki Aoki

2584 Combining Phase-field and VOF Methods with a Conservative Weakly Compressible Solver for Large-scale Two-phase Flow Simulation
Kai Yang, Takayuki Aoki, Yuma Tamaoki

2904 Eulerian Elastoplastic Analysis Using Lagrangian Particles for Resin Material
Hirofumi Sugiyama, Tokimasa Shimada, Koji Nishiguchi, Makoto Tsubokura, Shigenobu Okazawa

3327 Efficient parallel mesh movement based on fast low rank solvers and local remeshing
Youssef Mesri

MS1406 Portable, Efficient Implementation of Finite Elements for Mechanics Applications

1715 A performance portable implementation of high-order, entropy-stable spectral collocation schemes for compressible turbulent flow
Jerry Watkins, Travis Fisher, Wyatt Horne

2415 Hyperdimensional, Adaptive Finite Elements Using Camellia and Intrepid2
Nathan Roberts

3156 On performance portability of physical problems using libCEED
Leila Ghaffari, Valeria Barra, Jeremy Thompson, James Wright, Jed Brown
<table>
<thead>
<tr>
<th>MS1501 Computational Contact Mechanics</th>
</tr>
</thead>
</table>
| 381 First-order Primal-dual Algorithm for Quasi-static Unilateral Contact Problem with Coulomb Friction
 Yoshihiro Kanno |
| 513 A Reverse Constrained Preconditioner for the Lagrange Multipliers Method in Contact Mechanics
 Andrea Franceschini, Matteo Frigo, Carlo Janna, Massimiliano Fornariotan |
| 1247 Consistent Coupling of 1D Cosserat Beams and 3D Solid Bodies: From Embedded Fibers Towards Contact
 Alexander Popp, Ivo Steinbrecher |
| 1437 On the Application of Acceleration Techniques to a Partitioned Solution Approach to Thermomechanical Contact
 Antônio Manuel Couto Carneiro, Rodrigo Pinto Carvalho, José L. P. Vila-Chá, Bernardo P. Ferreira, Francisco M. Andrade Pires |
| 1486 Effect of particles on contact model under three-body contact conditions
 Jeng-haur Horng, Yang-Yuan Chen, Thi-Na Ta |
| 1618 Consequences of third-body thickness on first-bodies
 Olivier Bouillanne, Guilhem Mollon, Aurélien Saulot, Sylvie Descartes, Guillaume Chassaing, Nathalie Seres, Karim Demmou |
| 1859 The Extreme Mesh deformation approach (X-MESH) for sharp contact fronts modeling
 Benoît Lé, Nicolas Moës, Nicolas Chevaugeon, Jean-François Remacle |
| 1924 A Smooth Spline-based Contact Approach for Beams: Normal and Tangential Interactions
 Celso Jaco Faccio Júnior, Alfredo Gay Neto, Peter Wriggers |
| 2607 An implicit beam to shell contact algorithm using corotational beam elements and rotation-free shell formulation for vascular biomechanics
 Miquel Aguirre, Nitesh Nama, Beatrice Bisghinì, Baptiste Pierplat, C. A. Figueroa, Stéphane Avril |
| 2615 A Comparison of Different Isogeometric Refinement Strategies for the Solution of 2D Hertzian Contact Problem
 Sumit Kumar Das, Vishal Agrawal, Sachin Singh Gautam |
| 2821 Dynamic load balancing for contact mechanics at large scale
 Matthias Mayr, Christopher Steimer, Alexander Popp |
| 2918 An interface-enriched generalized finite element formulation for locking-free coupling of non-conforming discretizations and contact
 Alejandro Aragòn, Dongyu Liu, Sanne van den Boom, Angelo Simone |
| 2992 A Trust-region method for solving finite deformation contact problems in unfitted finite element method
 ハードリコトハリ, ロフクライウス |
| 3096 New fast numerical technique for the resolution of the quarter space contact problem
 Arnaud Duval |
| 3158 A Discrete Energy Consistent Approach for Implicit Dynamic Contact with Displacement and Velocity Constraints
 Mike Pusso |
| MS1502 Fluid-Structure Interaction Algorithms and Applications |
| 3418 Plastic zone analysis of nanoindentation for unique constitutive properties of elastoplastic materials
 Zhi Shen, Qipiu Jia, Jiao Li, Ruipeng Dong, Yongchao Liu, Xu Long |
| 357 Water Wave Interaction with a π-shape Floating Breakwater by Scaled Boundary FEM
 Meisam Qorbani Fouladi, Hamid Heidarian-Torkamani, Sasan Mohasseb, Longbin Tao |
| 1910 Added-mass of a finite length flexible cylinder in a narrow coaxial cylindrical duct
 Maria Adela Puscas, Romain Largrange |
| 2382 Simplex Space-Time Finite Elements for Fluid-Structure Interaction
 Norbert Hosters, Patrick Antony, Max von Danwitz, Daniel Hilger, Michel Make, Thomas Spenke, Marek Behr |
| 3082 Simulation of Interacting Deformable Particles at Low Reynolds Numbers Using Isogeometric Divergence-Conforming Immersed Boundary Method
 Antonio Cerrato Casado, Hugo Casquero, Joan J. Cerà Pino, Carlos Bona-Casas, Joan Masió Bennásar |
| 3167 Tuft flow visualization and measurement
 Manuel García, Levaï De Hoyos |
| MS1503 Recent Advances in Numerical Methods for Multi-Material Shock Hydrodynamics |
| 492 Exact Representation of Curved Material Interfaces in High-Order Lagrangian Hydrodynamics
 Nabil Atallah, Ketan Mittal, Guglielmo Scovazzi, Vladimir Tomov |
| 510 A Volumetric Extrapolation Method for Weak Impression of Interface Conditions on Level Sets
 Jan-Phillip Bäcker, Dmitri Kuzmin |
| 974 A Residual based a Posteriori Error Estimators for Algebraic Flux Correction Scheme
 Abhinav Jha |
| 1716 Elasto-Plastic Shock Dynamics using Implicit Shock Fitting with Space-Time Finite-Element Formulation
 Robert Nourgalev, Andrew Corrigan, Pierson Guthrey, Steve Wopschall |
| 1748 Invariant-Domain Preserving Approximations for the Euler Equations with Tabulated Equation of State
 Bennett Clayton, Jean-Luc Guermond, Bojan Popov, Eric Tovar |
| MS1505 Computational Fluid-Structure Interaction and Moving Boundaries and Interfaces |
| 764 Added-Mass Partitioned Algorithms for Fluid-Structure Interactions *Keynote Lecture
 William Henshaw, Donald Schwendeman |
| 996 Time-splitting Schemes for Fluid–Structure Interaction in Biomedical Applications
 Richard Schussnig, Douglas R.Q. Pacheco, Thomas-Peter Fries |
| 1288 3D coupled FSI analysis for passive morphing adaptivity in Wells turbine
 Valerio Francesco Barnabei, Alessio Castorini, Alessandro Corsini |
A (Weighted) Shifted Boundary Method for Moving Boundary Problems
Guglielmo Scovazzi, Oriol Colomés, Léo Nouveau, Alex Main, Kangan Li, Danjie Xu

Computational fluid-structure interaction with contact and turbulent flow applied to patient-specific simulation of heart valve disease *Keynote Lecture
Johan Hoffman, Joel Kronbrog

A Hyperelastic Extended Kirchhoff–Love Shell Model with Out-of-Plane Normal Stress
Yasutoshi Taniguchi, Kenji Takizawa, Tayfun Tezduyar

Space–Time Computational Methods for a Tsunami-Shelter Vertical-Axis Wind Turbine *Keynote Lecture
Yuto Otoguro, Kenji Takizawa, Tayfun E. Tezduyar

Ventricle-Valve-Aorta Flow Analysis with the Space–Time Isogeometric Discretization and Topology Change
Takuya Terahara

Circuit-integrated fluid-structure-piezoelectricity interaction analysis for flow-driven energy harvesters
Shigeki Kaneko

Computational Modeling of Fluid-Structure and Contact Interaction in Large Assemblies of Highly-Flexible Fibers Immersed in Viscous Flow
Anwar Koshaki, Grégoire Chomette, Bianca Giovanardi, Radil Radovitzky

A Unified Framework of Navier-Stokes Cahn-Hilliard Models with Non-Matching Densities
Marco Ten Eikelder, Kris van der Zee, Ido Akkerman, Dominik Schillinger

Integrated Modeling of the Human Left Heart: Coupling Electrophysiology, Mechanics and Fluid Dynamics
Michele Bucelli, Luca Dede', Alfio Quarteroni

Fluid–Structure Interaction Modeling for Compressible Flow Applications
Manoj R. Rajanna, Emily L. Johnson, Artem Korobenko, Yuri Bazilevs, Ming-Chen Hsu

Separation Simulation and Compatibility analysis of multibody aircraft with consideration of aeroelasticity
Nuo Ma, Fanmin Meng, Junhui Meng

Study on the behavior of bubbles colliding with hydrophilic and hydrophobic curved walls
Zijian Tang, Peng DU, Haibao HU, Xiaopeng Chen

Dynamic Mode Decomposition of Lead-Bismuth Eutectic Turbulent Flow in a Wire-Wrapped Single Rod Channel
Xilin Zhao

Acoustic-Structure Coupling Modeling and Dynamic Analysis of Pump-pipeline System
Shaojie Guo, Changqing Bai

Underwater Explosion (UNDEX) and Air-Blast Fluid Structure Interaction using Penalty and Strongly coupled Immersed-IGA-Peridynamics *Keynote Lecture
Shaunak Shende, Masoud Behzadinasab, Georgios Moutsanidis, Yuri Bazilevs
MS1608 Particle-based numerical modeling in Geotechnical engineering

389 Simulation of bearing capacity of pile in crushable soil
Trong-nghia Nguyen, Mamoru Kikumoto, Florince, Rahmat Kurniawan

459 Validation of DEM using macroscopic stress-strain behavior and microscopic particle motion in sheared granular assemblies
Usman Ali, Mamoru Kikumoto, Matteo Oryem Ciantia, Ying Cui

706 Simulations of submarine landslide-induced tsunamis
Shaoqian Pan, Somphong Chatuphorn, Anawat Suppasri, Shuji Moriguchi, Kenjiro Terada

869 An Improved Extended Material Point Method to Model Shear Band Evolution and Large Deformation Post-failure Behaviors
Yong Liang, Bodhinanda Chandra, Kenichi Soga

1220 Assessment of Macro and Micro level Heterogeneities for Characterizing Mechanical Behavior of Sand in Biaxial Test employing DEM
Madhu Sudan Negi, Mousumi Mukherjee

1476 A unified signed-distance-field DEM framework for arbitrary particle shapes
Zhengshou Lou, Shiwei Zhao, Jidong Zhao, Lirchong Huang

1552 The effect of particle shape on rockfall events
Ryota Shiyake, Dominik Kengel, Mamoru Kikumoto

1912 Evaluation of Skeletal Structure for Binary Granular Mixture Forming Reposed State
Masato Taue, Yukio Nakata, Shintaro Kajiyama

1952 Failure Analysis of Unsaturated Soil using Semi-Implicit MPM
Soma Hidano, Yuya Yamaguchi, Shinsuke Takase, Shuji Moriguchi, Kenji Kaneko, Kenjiro Terada

2068 Simulations of Earthquake-induced Landslides by MPM
Ryoichi Kimura, Soma Hidano, Riichi Sugai, Shuji Moriguchi, Kenjiro Terada

2498 Detailed Statistical Properties of Cell-Based Packing Structure in Elliptic Particle Systems
Xiaoyu Jiang, Takashi Matsushima

2535 Using 3D MPM to simulate multi phase gravity-driven mass flows for assessing the damage potential of cascading natural hazards
M.L. Kyburg, Betty Sovilla, Yves Bühler, Alessandro Cicoira, Johan Gaume

2714 A coupled implicit MPM-DDA for soil-structure interaction problems
Ryota Hashimoto, Bodhinanda Chandra, Kenichi Soga

2759 Rheology of Segregated Bi-disperse Granular Flow in An Inclined Plane
Haoran Jiang, Xiaoyu Jiang, Takashi Matsushima

2825 Discrete Element Simulation on Particle Runout of Dry Granular Chute Flow
Ahmed Ashour, Takashi Matsushima, Hitoshi Nakase

MS1609 Advanced computational modelling of wood, wood-based products, and timber structures

570 Wood-Water Relation Revisited from Molecular Scale
Chi Zhang, Dominique Derome, Jan Carmelet

1135 Phase Field Method-based Modeling of Fracture in Wood
Sebastian Pech, Markus Lukacevic, Josef Fussl

1252 Computed tomography-based modelling of moisture-induced mechanical behaviour of sawn timber during kiln drying
Sara Florisson, Lars Hansson, Johannes Huber, José Couceiro, Dick Sandberg

1322 Investigation of Chemical Elements Influence on Tracheid Effect by ICP-MS
Hi-jen Chen, Tzu-Tu Kuo, Wei-Chung Wang

2378 Modeling approach to estimate the bending strength and height effect of glued laminated timber beams
Markus Lukacevic, Christoffer Vida, Josef Fussl

2388 Long-Term Hygromechanical Behavior of Wood Exposed to Changing Climatic Conditions
Maximilian Autengrubet, Markus Lukacevic, Josef Fussl

2601 Methods in an open-source framework for non-linear time-history dynamic analyses of Cross Laminated Timber structures subjected to Computational Fluid Dynamics wind actions
Lorenzo Riparbelli, Ioannis Christovasilis, Richard Szoke Schuller, Marco Fioravanti

3258 Multi-Physical Modeling and Numerical Simulation of Thermo-Hygro-Mechanical Treatment of Wood for Use in Timber Structures
Robert Fleischhauer, Michael Kaliske

3283 Simulation of the temperature distribution in glued butt-joint timber connections
Dio Lins, Steffen Franke

MS1610 Numerical methods in geomechanics

594 Numerical elucidation of the graben crack damage that formed in the Aso caldera due to the 2016 Kumamoto earthquake *Keynote Lecture
Kentaro Nakai

617 Simulation of Lateral Compression-induced Fault Topographies based on the Non-linear Elasto-plastic Soil Mechanics
Tomohiro Toyoda

716 Simulation of deformation followed by failure of unsaturated slope in a rainfall model test
Takahiro Yoshikawa, Toshihiro Noda, Kengo Nishizawa

1477 Modelling landslide debris flow with entrainment: development and validation
Ivan Li, Eugene. K. L. Wong, Eric. H. Y. Sze

1751 Differences in Using Ceramic Discs and Microporous Membrane Filters for Suction Control in the Axis-Translation Technique for Unsaturated Soils
Xi Xiong, Shun-ichi Kobayashi, Junning Ma, Feng Zhang
1820 Hydrologic-geotechnical Modelling for Multihazard Analysis of Landslide and Flood caused by Heavy Rainfall
Nilo Lemuel Dolojan, Shuji Moriguchi, Masakazu Hashimoto, Nguyen Xuan Tinh, Hitoshi Tanaka, Kenjiro Terada

1854 Evaluation of slopes subjected to intermittent rainfall conditions
Sanchitha Jayakody, Kyohei Ueda, Ryosuke Uzuoka

2060 A numerical simulation of CPT Test Based on a Cavity Expansion Theory by Using Effective Stress Analysis
Tadashi Kawai, Yoshihiro NODA, Koken JIMBA

2129 Coupled Bond-Based Peridynamics and DEM with Softening Model for Cracking and Failure of Compacted Clay
Yutaka Fukumoto, Tomoyuki Sawo, Kousei Komuro, Eiji Horkoshi, Taiki Shimbo

2218 Development of a stability analysis method of reinforced soil by hybrid type rigid-plastic finite element method
Yuko Yamakura, Ena Sakon, Shun-ichi Kobayashi, Xi Xiong

2300 Quantification of the effect of rock shape properties on the distribution characteristics of rockfall run-out
Taiki Yoshida, Daiki Watanabe, Hasuka Kanno, Shyuji Moriguchi, Kenjiro Terada

2374 Large Deformation Simulation for Geotechnical Engineering Based on Cosserat Continuum Theory and Isogeometric Analysis
Hongxiang Tang, Feng Zhu

2460 Seismic Response Analysis of Embankment Dams by Velocity-based Space-Time FEM
Kazunori Fujisawa

2511 Dynamic coupled analysis with complete formulation of unsaturated soil in centrifuge tests
Ryosuke Uzuoka, Jiawei Xu, Ryosuke Yoshikawa, Kyohei Ueda

2515 Mathematical and numerical modelling of biomediated soil improvement
Ibuki Nishimura, Hitoshi Matsubara

2517 Mathematical and numerical modelling of photoautotrophic calcification on rock surface
Hitoshi Matsubara, Ibuki Nishimura

2585 Numerical simulation of pile penetration into granular materials using the Discrete Element Method
SHOGO ISHII, Hirokazu Akagi, Takatoshi Kiriya, Kota Otake

2655 Numerical simulation of pile penetration into geomaterials using particle-element coupled method
Takatoshi Kiriya, Kota Otake, Shogo Ishii, Hirokazu Akagi

2700 Simulation the landslide induced tsunami using integrated numerical modelling
Doan Lo, Kyohei Ueda, Ryosuke Uzuoka

2734 Large Deformation Simulation for Geotechnical Engineering Based on Cosserat Continuum Theory and Isogeometric Analysis
Hongxiang Tang, Feng Zhu

2900 A slope stability analysis over a large area using Hovland’s method and three-dimensional simplified Bishop’s method
Daichi Sugio, Saneiki Fujita, Kenta Tozato, Shuji Moriguchi, Kenjiro Terada

3001 Kinematics of Granular Materials Considering Realistic and Pseudo-Realistic Particle Morphology
NSSP Kalyan, Ramesh Kannan Kandasami

3129 Ground behavior in belled pile uplifting by Discrete Element Method
Kota Otake, Hirokazu Akagi, Takatoshi Kiriya, Shogo Ishii

3251 Comparative analysis of oneAPI and CUDA technologies for the parallel implementation of matrix-free finite element method
Arseny Mokin, Anatoly Vershinin, Grigory Sabinin, Vladimir Levin

3301 Mathematical modeling of coupled hydro-geomechanical processes with changing properties of the medium under finite strains using high-performance computing
Anatoly Vershinin, Vladimir Levin, Victor Eremin, Yury Podladchikov

3335 Mathematical and numerical modelling of core sample deformations
Emmanuel Omatuku, Sebastian Skatulla, Marcello Vichi, Jörg Schröder, Tim Ricken

3465 Pore Pressure Parameters for Unsaturated Soils
Mahnoush Gharehdaghi

3718 Recent Advances in Computational Geomechanics
Babak Shahbodagh, Ngoc Mac, Golnaz Esgandani, Nasser Khalili
MS1701 Applications of Artificial Intelligence and Machine-Learning Methods to Mechanics, Materials, Medicine, and Engineering

444 Designing Auxetic Metamaterials using Deep Learning
Xiaoyang Zheng, Ikumu Watanabe

456 Artificial Intelligence-Assisted Design: A Multi-Input Neural Network-based Hull Design Assistant
Yu Ao, Shaofan Li, Yunbo Li, Jiaye Gong

368 Graph theory-based structural analysis on density anomaly of silica glass *Keynote Lecture*
Shingo Uraita, Aik Rui Tan, Rafael Gómez-Bombarelli

1314 A machine learning-based probabilistic computational framework for uncertainty quantification of actuation of clustered tensility structures
Yipeng Ge, Ziqiang Ho, Shaofan Li, Liang Zhang

1576 A Convolutional Neural Network for predicting the eigenvalues of the 2D Helmholtz equation
Daiki Ishida

1852 A machine learning model to forecast of a cable-stayed bridge deformation by using weather forecast data
Youqin Huang, Shaofan Li

1883 Artificial neural network methods based on boundary integral equations
Han Zhang, Peirong Li, Cosmin Anitescu, Elena Atroshchenko

1968 Constructing Machine-learned Intertatomic Potentials for Covalent Bonding Materials and MD Analyses of Dislocation and Surface
Junya Moriguchi, Ken-ichi Satoh, Kenji Nishimura, Tomohiro Sato, Masanori Takuma, Yoshinori Shiihara, Takuya Iwashita

2034 Physics-informed Neural Network Enhanced Reproducing Kernel Particle Method for Modeling Grain Refinement *Keynote Lecture*
Jiun-Shyan Chen, Jonghyuk Baek, Kristen Susuki

2321 Shear Stress Analysis inside CuZr-based Metallic Glasses using Machine Learning Potential
Hibaki Kato, Yoshinori Shihiara, Takuya Iwashita

2671 Discovery of Cell Migration Models by Data Driven Variational System Identification and Inverse Reinforcement Learning
Siddhartha Srivastava, Chengyang Huang, Wangqiang Shen, Patrick Kinnunen, Keneth Ho, Zhenlin Wang, Gary Luker, Kathy Luker, Jennifer Linderman, Zhi-Hua Hu, Krishna Garikipati

2689 A deep learning-based design approach for developing additive manufactured bone scaffolds to enhance bone ingrowth
Chi Wu, Boyang Wan, Ali Entezari, Jionguang Fang, Jingxiao Zhong, Wemwei Huang, Yanan Xu, Grant P Steven, Michael V Swain, Qing Li

2702 An ANN-based model-order-reduction method for large-scale simulation and design
Renkai Tan, Kangjie Li, Wenjing Ye

2965 Modified Structure of Composite Neural Network using Multi-fidelity Data with Different Input Variables
Hwiansang Jo, Byeong-uk Song, Joon-Yong Huh, Seung-Kyu Lee, Ickin Lee

3072 Nonintrusive neural topology optimization
Miguel Bessa, Gawel Kus, Shushu Qin

MS1702 Machine Learning for Cardiac Modelling and Simulation

804 Model order reduction, sensitivity analysis and uncertainty quantification in cardiac electromechanics
Francesco Regazzoni, Matteo Salvador, Luca Dedè, Alfio Quarteroni

909 Efficient AI-Surrogates for Clinical Translation: Parameter Estimation and Biomechanics Assessment of the Heart
Gonzalo Mario Talou, Thiranjah Prasad Babarenda Garnage, Martyn Nash

949 Multi-Fidelity Simulations of Cardiac Electrophysiology with Applications to Atrial Fibrillation
Lia Gandur, Simone Pezzuto, Rolf Krause, Paris Perdikaris, Francesco Sahli-Costabal

2078 Physics-informed neural network estimation of material properties in cardiac biomechanical models
Fedelica Caforo, Francesco Regazzoni, Stefano Pagani, Alfio Quarteroni, Gernot Plank, Gundolf Haase

2594 Physics-informed neural networks to learn cardiac fiber orientation from multiple electroanatomical maps
Simone Pezzuto, Carlos Ruiz-Herrera, Thomas Grandits, Gernot Plank, Paris Perdikaris, Francisco Sahli-Costabal

2663 Data Creation for Arrhythmic Risk Assessment in Post-Infarction Patients *Keynote Lecture*
Mary M. Maleckar

3005 Combining a Long Short-Term Memory Network with 3D Simulations of Fetal and Maternal Ventricular Excitation for Fetal ECG Extraction
Julie Uy, Lena Myklebust, Hemeng Neng Eaveal

3062 Physics-aware Deep Learning Models for the Inverse Problem of Electrocardiography
Riccardo Tenderini, Stefano Pagani, Alfio Quarteroni, Simone Deparis

3247 Physics-informed neural networks for image registration: computing cardiac strain
Francisco Sahli-Costabal, Pablo Arratia, Hernán Mella, Sergio Uribe, Daniel E. Hurtado

MS1703 Incorporating fundamental principles in innovative machine learning models of physics

648 Learning Mesh-Based Simulations using Graph Neural Networks with Physical Symmetries
Maianbo Hone, Naoki Morita, Naoto Mitsume

1468 Conditionally Parameterized, Discretization-Aware Graph Neural Networks for Scientific Computing on Unstructured Meshes *Keynote Lecture*
Karthik Duraisamy, Jiayang Xu, Elnaz Rezaian

2177 Active learning and integrable deep neural networks for scale bridging materials physics: From electronic structure through statistical mechanics to phase field theories and elasticity
Krisztina Garikipati, Gregory Teichert, Sambit Das, Muratahan Aykol, Chiranjeevi Gopal, Vikram Gavini

2678 EM Partition of Unity Networks with Applications in Quantum Computing
Tiffany Fan, Nat Trask, Marta D’Elia, Eric Darve
3221 Hyper-differential sensitivity analysis for learned operators
Bart Van Bloemen Waanders, Joseph Hart, Shane McQuarrie, Karen Willcox

3300 Error-in-variables modeling for operator regression
Ravi Patel, Indu Manickam, Myoungku Lee, Nathaniel Trask

3318 Approximating the Operator of the Wave Equation via Deep Learning
Ziad Adlirany, Régis Cottereau, Marc Laforest, Serge Prudhomme

3401 Physics-informed neural network for increasing prediction accuracy of microscale variations of single plant cell during drying
Chanaka Prabuddha Batuwatta Garnage, YT Gu, CM Rathnayaka, HCP Karunasena, MA Karim, WDCC Wijerathne

MS1704 Deep Learning in Computational Materials Science and Engineering
367 Deep learning in multiscale modelling of spatially tailored materials
Shaoping Xiao, Siyuan Chen, Stephen Hallett

MS1705 Data-driven and Machine learning Method for turbulence, Fluid Loads, and fluid-structure Interaction
1564 Liutex-based Direct Integrated Field Inversion and Machine Learning Framework for Turbulence Modeling
Yisheng Gao, Jiyoung Jung

3110 Neural network supported surrogate models for particle-laden flow
Fateme DARLIK

3337 Neural Network-Based Surrogate Models Applied to Fluid-Structure Interaction Problems
Daniel Andelis Airbones, Rishith E. Meethal, Birgit Obst, Roland Wüchner

3417 Hybrid physics informed neural networks applied to two-dimensional turbulence
Vijay Kag

MS1706 Decision-making in large-scale atomistic material simulations
439 Optimal Ressource Allocation in Parallel Trajectory Splicing
Andrew Garmo, Vinay Ramakrishnaiah, Danny Perez

1390 Building Better Databases to Learn From - Interatomic Potentials for Material Science and Beyond
Mitchell Wood, Aidan Thompson

2394 Fitting and using machine learned interatomic potentials for plasticity
Markus Stricker

2629 Efficient and decision-based exploration of the high-dimensional chemical and structural design space of high entropy alloys
*Keynote Lecture
Jörg Neugebauer, Jan Janssen, Fritz Körmann

MS1707 Uncertainty Quantification for Data-Intensive Inverse Problems and Machine Learning
544 Using Manifold Learning to Enable Computationally Efficient Stochastic Inversion with High-dimensional Data
Tian Yu Yen, Tim Wildey

1770 Variational Bayesian optimal experimental design for the discovery of electro-deposition process models
Mehdi Kahloulj, Jayuan Dong, Christian Jacobsen, Xin Huan, Kanthik Duraisamy

2704 Projected Variational Methods for High-dimensional Bayesian Inference
Peng Chen

2799 Fatigue Crack Growth Prediction under Incomplete Information using Kalman Filter
Kenji Amaya, Rinya Hatanaka, Norihiko Hana, Masaki Umeda

2810 Estimation for Time-Enhancement Curves of Regions-of-Interest from Series of X-ray Projection Data Obtained from Intra-operation
Tomoya Hasegawa, Kenji Amaya, Katsuyuki Taguchi

2811 Regularization Method using Crack Growth Candidate Solutions in Crack Identification Inverse Problem
Kazushi Mitamura, Kenji Amaya, Norihiko Hana, Masaki Umeda, Masao Akiyoshi

3071 Data Imputation and Bayesian Inverse using Quantum-Inspired Hamiltonian Monte Carlo
Didem Kochaç, Zheng Zhang, Youzuo Lin, Xi Yang

3138 Scalable Statistical Finite Elements via Partial Differential Equation Representation of Matérn Fields
Kim Jie Koh, Eky Febrianto, Fahmi Cirak

3246 Coupling Optimal Experimental Design and Optimal Control
Rebekah White, Bart Van Bloemen Waanders

3364 An ML-based Workflow for Seismic Imaging under Uncertainty
Alvaro Coutinho, Charlan Alves, Carlos Barbosa, Djalma Soares Filho, Rodolfo Freitas, Liliane Kunstmann, Marta Mattoso, Débora Pina, Fernando Rochinha, Bruno Silva, Rômulo Silva

MS1708 Machine Learning Based Design of Composite Materials and Structures
415 Deep Learning Framework for Material Design Space Exploration using Active Transfer Learning and Data Augmentation
Yongtae Kim, Youngsoo Kim, Charles Yang, Kundo Park, Grace Gu, Seungwha Ryu

1444 Generative Machine Learning-Based Optimization for Composites with High Impact Performance
Sangryun Lee, Elizabeth Pegg, Grace Gu

1951 The mechanism of Activated carbon to removal Nano-plastic from Molecular dynamics approach
Shiwei Chang, Wei-han Hui

2066 Transfer learning using homogenization theory for efficiently predicting elasto-plastic response of particle/short fiber-reinforced composites
Jiyoun Jung, Yongtae Kim, Jinkyoo Park, Seungwha Ryu

2421 Intelligent Composites Forming - Simulations For Faster, Higher Quality Manufacture
Siyuan Chen, Jonathan Belnoue, Adam Thompson, Tim Dodwell, Stephen Hallett
MS1710 Numerical Simulations and Machine Learning for Micro-Meteorology Predictions and Applications

1562 Three-Dimensional Super-Resolution of Passive-Scalar and Velocity Distributions Using Neural Networks for Real-Time Prediction of Urban Micrometeorology
Keynote Lecture
Yuki Yasuda, Ryo Onishi, Keigo Matsuda

1918 Direct numerical simulation of turbulent mixing in a heated swirling jet issued into a cross-flow
Yasuo Shiraishi, Tomoki Asaka, Koichi Takahashi, Akira Anju

2182 Model Intercomparison Study of Jet in Cross Flow for Prediction of Hot Air Recirculation
Xiaohong Liu, Ryo Onishi, Keigo Matsuda, Koji Nagata, S. Qian, Tomoki Asaka

2337 Impact of drone observation on micrometeorology predictions
Takuya Morita, Ryo Onishi, Yuki Yasuda, Daisuke Kudo, Ayako Kinuma, Atsushi Oseda

2391 Sensitivity Study of Turbulence Models and Mesh Size for CFD Simulations of Jet in Cross Flow for Prediction of Hot Air Recirculation
Xiaohong Liu, Ryo Onishi, Tomoki Asaka, Koji Nagata, S. Qian, Tomoki Asaka

2483 An Examination of Floating-point Precision for Super Resolution of Micro Meteorology Simulations
Yuichi Hirokawa, Ryo Onishi, Yuki Yasuda, Kolomenskiy Dmitry, Daisuke Sugiyama

2489 Analyses of Odor Gas Advection around the Miura Peninsula Using High-Resolution Meteorological Simulation
Keigo Matsuda, Toru Sugiyama

2505 Drag Coefficient of Fractal Trees: Investigation into Geometric Invariability
Igor Serebrovsky, Ryo Onishi, Dmitry Kolomenskiy

2675 Highly Resolved Regional Climate Simulations over Southern Kanto in Japan with Pseudo Global Warming Method
Toru Sugiyama, Keigo Matsuda

2785 A wavelet-based three-dimensional Convolutional Neural Network for superresolution of turbulent vorticity
Tomoki Asaka, Katsunori Yoshimatsu, Kai Schneider

MS1711 Learning models for reliable predictions and decision making: methods and applications

546 Domain-Aware Active Learning for Multifidelity Optimization
Francesco Di Fiore, Laura Mainini

686 Generalized Neural Network Approach to Ship Motion Forecasting
Kevin Silva, Kevin Maki

1064 Reduced operator equation for non-linear partial differential equations
Elizabeth Qian, Ionut-Gabriel Farcas, Karen Willcox

1066 Gaussian process regression for ship dynamics: Between the Scylla of slow Karhunen-Loève convergence and the Charybdis of transient features
Stephen Guth, Themistoklis Sapsis

1152 Predicting failures from data and physics: a nearly-real-time approach to system prognostics
Pier Carlo Berri, Laura Mainini

1685 Multi-fidelity Bayesian experimental design for extreme-event statistics
Yulin Pan, Xianliang Gong

1694 Combining Artificial Neural Networks and Modal Decomposition Methods to Assess and Forecast Ship Performance in Waves
Matteo Diez, Andrea Serani, Mauro Gaggero, Emilio Fortunato Campana

2077 Power Spectrum Estimation Based on the Long and Short-Term Memory Neural Network Subject to Missing Data
Wanxiang Zhao, Yuanjin Zhang

MS1712 Machine Learning and Computational Modeling for Mechanical Behavior of Materials

1554 Prediction of Wood Surface Characteristics by Using Deep Learning on Tracheid Effect
Chun-Ping Huang, Tsu-Yu Kuo, Wei-Chung Wang

2039 A Neural Network Enhanced Finite Element Method for TPMs based Mechanical Metamaterials Simulation
Yan-Zhen Chen, Tsung-Yeh Hsieh, Tsung-Hui Huang, Cheng-Che Tung, Po-Yu Chen

2300 HiDeNN-TD: Reduced-Order Hierarchical Deep Learning Neural Networks
Liao Zhang, Ye Li, Shaoqiang Tang, Wing Kam Liu

2438 Intelligent Nonlinear Multiscale Simulation of Injection-Molded Short-Fiber-Reinforced Composites
Haoyan Wei, CT Wu, Wei Hu, Yong Guo, Dandan Lyu, Tung-Huan Su, Hitoshi Oshuma, Masato Nishi, Sean Wang, Tadashi Naito, Joseph Lin, Leo Shen, Kai Wang, Philip Ho

2453 Bio-inspired, Machine Learning-designed/optimized Metastructures and Composites with Synergistic Mechanical Properties
Po-Yu Chen

2681 A Hierarchical Design on Bioinspired Structural Composites using Reinforcement Learning
Chi-Hua Yu, Bor-Yann Tseng, Cheng-Che Tung, Zhenze Yang, Elena Zhao, Po-Yu Chen, Chun-Shan Chen, Markus Buehler
Topological Optimization of the Dental Implant by Genetic Algorithm and Deep Learning Network

Graph and Machine Learning-based Approach to Prediction of Ultimate Load of Latticed Shells Considering Geometric Nonlinearity

Geometric and Recurrent Neural Network for Surrogate Modelling of Polycrystalline Metals

AI-driven Photo-based Prediction of Orthodontic Force and Moment under Treatment

Database-Driven Multiscale Simulation of Inelastic Materials through an Efficient On-the-fly Generation of Data

Prediction of demand in circuit board using machine learning

A Novel Coarse-Grained Model for Chloride Effect on Glass Reinforced Polymer Composites

Data augmentation technique for construction engineering regression surrogate model

Surrogates of Crystal Plasticity Models Using Self-Consistent Recurrent Neural Networks

Construction of a surrogate model for crash box corruption

Deep neural network battery life and voltage prediction by using data of one cycle only

Finite element quantitative analysis and deep learning qualitative estimation in structural engineering

Artificial Neural Network Potential Model for Pb-Te-Ga Alloy Materials

Prediction of physical property of fiber-reinforce composite materials using deep neural network

Machine Learning-Based Energy Model and Mechanical Properties of Chemically Complex Ultraelastic High Entropy Alloys

Defects Analysis in Carbon Fiber Reinforced Plastic by Combining Machine Learning and Infrared Stress Analysis

Inverse Design of Face-Like 3D Surfaces via Deep Learning

Physics-informed neural networks for structural shell elements

Unified unit-cell micromechanics model for effective mechanical properties of particulate, fibrous, and laminated composite materials

Adversarial Neural Networks for solving variationally formulated Partial Differential Equations

A new Physics-Informed Neural Network based Topology Optimization framework for structural optimization

A Physics-Informed Machine Learning Meshfree Method for Predictive Tsunami Simulation

Scientific Contents
Optimization of turbine airfoil using deep reinforcement learning
Kazuo Yonekura, Hitoshi Hattori, Shohei Shikada, Kohei Maruyama

Real-time Topology Optimization Design of Heat Dissipation Structure Based on CNN Framework
Qi Xu, Jun Yan, Dongling Geng, Qi Zhang, Hongze Du

Zunyi Duan, Tianjie Zhang, Haoxiang Zhang, Zhiyuan Chen, Bin Xu, Jihong Zhu, Jun Yan

Topological Design of Grid Stiffened Structures
Bin Niu, Haiyang Liu, Suyuan Xu

MS1716 Data-driven approaches in computational solid mechanics

Mechformer: A General Deep Learning Model for History-Dependent Mechanical Response Prediction
Ling-Han Song, Jian-Sheng Fan, Chen Wang

EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery): Application to Plastic Hardening
Moritz Flaschel, Siddhant Kumar, Laura De Lorenzi

Machine learning constitutive models of inelastic materials with microstructure
Reese Jones, Ari Frankel, Cosmin Safta, Kyle Johnson

Inverse identification of cyclic constitutive law of structural steels using Bayesian optimization
Bach Do, Makoto Ohsaki

Distance Minimizing based Data-Driven Computational Method for Elasto-plastic Analysis with Fixed Dataset
Zhangcheng Zheng

Data-driven Constitutive Laws for Hyperelasticity in Principal Space: Numerical Challenges and Remedies
Minh Vu Chau, Michal Habera, Hamidreza Dehghani, Andreas Zilian

Real Time Hyper-elastic Simulations with Probabilistic Deep Learning
Saurabh Deshpande, Jakub Lengiewicz, Stéphane Bordas

Constitutive Modeling of Anisotropic Hyperelastic Materials based on Physically Constrained Artificial Neural Networks
Karl A. Kalina, Lennart Linden, Jörg Brummund, Markus Kästner

Data-Driven viscoelasticity in the frequency domain
(Amir)Hossein Salahshoor, Michael Ortiz

A PDE-Based Transformation Method for Model Order Reduction of Nonlinear Geometrically Parameterized Microstructures
Therson Guo, Ondrej Rokos, Karen Veroy

Physics-informed neural-operator for multi-scale mechanics and materials
Bungede Liu

Polyconvex material models using Neural ODEs
Vahdullah Tac, Francisco Sahli Costabal, Adrian Buganza Tepole

Bayesian Neural Networks for Weak Solution of PDEs with Uncertainty Quantification
Xiaoxuan Zhang, Krishna Garikipati

Unsupervised discovery of interpretable linear viscoelastic constitutive laws
Enzo Marino, Moritz Flaschel, Siddhant Kumar, Laura De Lorenzi

Neural Network-Based Constitutive Model for Solid Materials
Reem Alhayki, Eugenio Mutti-Zavala, Wulf G. Dettmer, Djordje Peric

Polyconvex Anisotropic Hyperelasticity with Neural Networks
Dominik K. Klein, Mauricio Fernandez, Robert J. Martin, Patrizio Neff, Oliver Weeger

Adaptive Goal-oriented Phase Space Sampling in Data-Driven Computational Mechanics
Anna Gorgioni, Konstantinos Karipperis, Laurent Stainier, Michael Ortiz, José Andrade

Surrogate models for full-field prediction of stress and fracture of fibre reinforced composites
Yang Chen, Tim Dodwell, Chensen Ding, Richard Butler

Surrogate model of elastic large-deformation behaviors of compliant mechanism using co-rotational beam element
Kai Suto, Yusuke Sakai, Kotaro Tanimichi, Taisuke Ohshima

A Mechanics-Informed Artificial Neural Network Approach in Data-Driven Constitutive Modeling of Elastic and Viscoelastic Materials
Faisal As’ad, Philip Avery, Charbel Farhat

Experimental Validation of the EUCLID approach for Unsupervised Discovery of Hyperelastic Constitutive Laws
Pietro Carrara, Maurizio Ricci, Moritz Flaschel, Siddhant Kumar, Laura De Lorenzi

A data-driven, physics-compatible approach to model history-dependent materials
PIERRE Ladeveze, David Neron, Paul-William Gerbaud

A Physics-informed Complementary Energy Form in Solid Mechanics
Yizheng Wang, Yinghua Liu

MS1717 Recent Advances in Scientific Machine Learning and Uncertainty Quantification Methods for Modeling Complex Systems

Sensitivity-free Topology Optimization using Stochastic Gradient Estimators
Gawel Kus, Sybrand van der Zwaag, Miguel Bessa

Coupling Separable Monte Carlo with Kriging-based Adaptive Reliability Analyses in High Dimensional Problems
Gabriele Capasso, Christian Gogu, Christian Bes, Jean-Philippe Navarro, Martin Kempenaes

Multi-fidelity modeling of multi-scale porosity defects in cast alloys
Shiguang Deng, Carlos Mora Sardina, Ramin Bostanabad
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS1718</td>
<td>Machine Learning-Based Computational Methods in Engineering Mechanics</td>
<td>Application of evolitional deep neural network to external flows Mitsuaki Matsuo, Koji Fukagata, Tamer A. Zaki</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics Guided Deep Learning Method to Surrogate Flow Simulation Hiroki Sató, Kazuo Yonekura</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Development of AI Diagnosis of Cracks in Concrete Structures Using Digital Hammering Inspection Takashi Matsunaga</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Local Extreme Learning Machines for Computational PDEs: Algorithm and Comparison with Classical and High-Order Finite Elements Suchuan Dong, Jielin Yang</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Neural network based isogeometric design space exploration Aviral Prakash, Joseph D. Benzaken, John A. Evans</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics Informed Neural Networks for Heterogeneous Materials Antareep Kumar Sarma, Chandrasekhar Annavarapu, Pratanu Roy, Shriram Jagannathan</td>
</tr>
<tr>
<td>MS1719</td>
<td>Advances in data-driven methods through Gaussian processes</td>
<td>Bayesian Optimization on Fifth-Order Targeted ENO Scheme for Compressible Flows Yiqi Feng, Felix Schranner, Josef Winter, Nikolaus A. Adams</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data Mohamed Aziz Bhouri, Paris Perdikaris</td>
</tr>
<tr>
<td>MS1720</td>
<td>Machine-Learning Accelerated Inverse Design</td>
<td>A Deep-Learning-Based Inverse Design Framework using Compressed Simulation Data for Self-Oscillating Gels Doruk Aksoy, Brian Chen, Shravan Veerapaneni, Silas Alben, Robert Deegan, Alex Gorodetsky</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Robust Deep Learning Models for Inverse Design of Complex Mechanical Metamaterial Structures Pravan Omprakash, Neelam Mishra, Ayán Halder, Niraj Jha, Jyotiraditya Bose, Arkadipta Chattopadhyay, Soumya Swayamjyoti, Kisor Kumar Sahu</td>
</tr>
</tbody>
</table>
MS1802 Computer Vision on Structural Experiments, Inspection, and Monitoring

1253 **Deep Learning Approach to extract principal stresses from Photoelasticity Images by posing it as Classification and Regression problem**
Dong-Wook Lee, Prabakaran Balasubramanian, Jide Oyebanji, Sara Al Shehhi, Tae Yeon Kim, Heungjo An, Sung Mun Lee, Sumaya Altamimi, Mohammed Al Teneji

2059 **Image Measurement on External Reinforced Concrete Frame Retrofitting**
Yuan-sen Yang, Lap-Loi Chung, Tsung-Chih Chio

2876 **Optical Principle and Accuracy Evaluation of Equilateral Prism used for Stereo Image Measurement**
Ming-Hsiang Shih, Shih-Heng Tung, Wen-Pei Sung

MS2101 Computational Mechanics for Nuclear Waste Disposal Technologies

1777 **Effect of in-situ heterogeneities and pre-existing flaws on rock spalling around underground excavations**
Cristina Saceanu, Adriana Paluszy, Robert Zimmerman, Diego Mas-Ivars

2315 **On The Simulation of THM Behaviour of Forge Mock-up Experiment**
Seda Torisu, Shin Sato, Shuichi Yamamoto, Masaaki Fukaya, Toshihiro Sakaki, Stratis Vomvoris

2590 **Model-Supported Assessment of Barrier Performance in Deep Geological Repositories: Contribution to the Site Selection Process in Switzerland**
Alexandros Papaflouri, Chao Li, Herwig R. Müller, Stratis Vomvoris, Paul Marschall

2771 **Constitutive model of expansive soils considering the influence of the cation exchange on osmotic pressure**
Hiroyuki Kyokawa, Yasuhiro Muto, Junichi Koseki, Shintaro Ohno

MS2102 COMPUTATIONAL METHODS FOR ENVIRONMENTAL FLUID FLOWS

531 **Representation of Coastal Protections in the Shallow Water Equations Without CFL Restrictions**
Kyle Mandli, Chanyang Ryoo

1313 **Mechanism of delayed leaching of heavy metals from naturally contaminated soils**
Risa Komuro, Mamoru Kikumoto

2241 **Multivariate Flood Fragility Analysis for USACE Inland Levees**
Lauren Adams, Mehrdad Rahimi, Abdollah Shafeezae, Ethan Kubatko

2261 **Coupling Global Ocean Circulation and Global Tide and Storm Surge Model**
Coleman Blakely, William Pringle, Joannes Westerink

2327 **Gas-liquid-solid Three-phase Implicit Finite Element Analysis based on Multi-phase-field Model using Unstructured Grid**
Junichi Matsumoto

2430 **Multiple Time Scales and DG Methods for Multi-Layer Ocean Modeling**
Robert Higdon
MS2201 Advanced Computational and Experimental Technologies for Civil Infrastructures

691 Preliminary Computational Analysis of Structural Performance and Damage of Reinforced Concrete Slabs Subjected to Open Air Blasts
Seong-Kug Ha, Beomjoo Yang

2136 A general review on microstructural properties of bacteria-based self-healing cementitious composites
Naru Kim, Joonyo Seo, Hayeon Kim, Seonhyeok Kim, H.K. Lee

2190 Reviews on micromechanics-based failure analysis for fiber-reinforced laminates via Puck failure criteria
Jin-Ho Bae, Taegeon Kil, Beomjoo Yang, Siew Ying Tay, H.K. Lee

2310 Recent progress in piezoresistive CNT-incorporated polymeric composite sensors: An overview
Taegeon Kil, Daekik Jang, H.K. Lee

2512 Utilization of coal bottom ash for the alkali-activator in geopolymers
Suhawn Ju, Sungwoo Park, Sukhoon Pyo

2879 Applicability of Large-Scale Finite Element Analysis to Nonlinear Problems of Concrete Structures
Eiji Tanaka, Manabu Uchiyama

MS2202 Frontiers of Nonlinear, Impact and Instability Analysis of Solids and Structures

904 Creasing Instability Analysis Focusing on Energy Barrier and Energy Bottom
Atsuya Ogino, Seishiro Matsubara, So Nagashima, Dai Okumura

905 Incremental Mean-Dilatation Method for Coupled Thermo-Mechanical Problems in Nearly Incompressible Solids
Ryo Muramatsu, Seishiro Matsubara, So Nagashima, Dai Okumura

1140 Finite element analysis of fracture strength in ceramics based on the Generalized Pareto model for pore size distribution
Chihiro Ita, Toshiro Osada, Shingo Ozaki

1627 Numerical study on effect of boundary condition for collapse behavior of plate subjected to axial compression and bending
Kenichi Masuda

Daigoro Isobe, Satoru Chiba

2244 Axial compressive response of circular tubes with lattice core fabricated by powder-bed fusion process of metal 3D printer
Knowledge Lecture
Shin-ya Tatsara, Kuniharu Usuijima, Hiroyuki Yamada

2306 Study on Thin Reinforced Concrete Slabs Subjected to low-velocity Impact - Preventing scattering debris by using steel deck plates -
Masaki Gohara, Yasunori Mizushima, Yuuki Idosako, Yasuto Yonezawa

2220 Experiments and Simulation of Ductile Fracture Considering Damage History for High-Strength Steel Sheets
Ryo Shirane, Shotaro Chiraei, Kuniharu Usuijima, Satoru Yoneyama

MS2203 Hyper-complex disaster simulation

1872 Real-time tsunami forecast by combined use of Bayesian updates and POD - A case study in Westport (Washington) -
Louise Hirao Vermaer, Saneki Fujita, Reika Nomura, Yu Otake, Shuji Moriguchi, Kenjio Terada, Randall J. LeVeque

1975 Numerical Study on Damage of Tsunami Evacuation Building under Tidal Wave and Debris Impact
Hiroyuki Omura, Naoto Mitsume, Mitsuteru Asai, Daigoro Isobe

2064 Improvement of a tsunami scenario detection framework by using synthetic geodetic data
Reika Nomura, Saneki Fujita, Louise Ayako Vermaer, Yu Otake, Shuji Moriguchi, Diego Melgar, Randall LeVeque, Kenjio Terada

2119 Hybrid seepage failure analysis between two-phase mixture flow techniques using an ISPH-DEM coupling method
Kunpei Tsui

2251 3D Slope Stability Analysis Considering Influence of Infiltration and Surface Flow
Kenta Tozato, Nilo Doloin, Yoshia Touge, Shuichi Kure, Shuji Moriguchi, Seiki Kawagoe, So Kazama, Kenjio Terada

2332 Tsunami Forecasting from Sparse Observations by Semi-Supervised Outlier Detection with Generative Adversarial Network
Hiroyuki Omura, Shinsuke Takase

2361 A Numerical Study of the Bulk Viscosity in the Cumulant Lattice Boltzmann Method on Tsunami Impact Pressure
Kenta Sato, Koji Kawasaki, Shunichi Kosihmura

2463 Optimization of offshore gauge configuration for early tsunami forecast with GA and POD
Saneki Fujita, Reika Nomura, Shunichi Kosihmura, Yu Otake, Shuji Moriguchi, Kenjio Terada

2803 Research on Tsunami Evacuation Simulation Considering Population Change and Snow Cover Conditions
Shin-ya Horai, Shinsuke Takase, Yasushi Takeyama

3403 Clarification of the Damage Mechanism of the Long-Period Bridge System Damaged by the 2016 Kumamoto Earthquake
Shogo Yamamoto, Gaku Shoji, Michio Ohsumi

MS2204 Simulation-based Disaster Prediction and Mitigation

1189 A General Terrain-Fitted Coordinate System for Modelling Hazardous Shallow Flows in Mountain Area
Yih-Chin Tai, Ching-Yuan Ma, Chi-Jyun Ko, Hock-Kiet Wong

1456 Deep Learning Enhanced Dynamic Meshfree Analysis
Dongdong Wang

1574 Eulerian-based Finite Element Simulation of Landslide-induced Consequences on Submarine Infrastructure
Pavel Trapper, Avshalom Ganz, Miriam Gindis

1926 A Duality-based Coupling of Cosserat Crystal Plasticity and Phase Field Theories for Modeling Grain Refinement
Shogo Yamamoto, Shinsuke Takase, Michio Ohsumi, Shinsuke Yamada, Dai Okumura, Seishiro Matsubara, So Nagashima, Yu Otake, H. Eliot Fang
MS2205 Microstructural characterization and property evaluation of materials for structural safety

604 Image based data-driven approach for material property prediction
Sung-wook Hong

877 Two-scale Analysis of Mechanical Properties for Cement Paste by Synergistically Combining Experimental and Computational Approaches
Tong Han, Donghwi Eum, Sung-Wook Hong, Ji-Su Kim

1335 Microstructural Characterization of Fiber-Matrix Interface and its Mechanical Property Evaluation
Jeewoo Suh, Yoon-Chul Kim, Kenjirou Terada, Tong-Seok Han

2300 Combination of physics-based and data-driven modeling for nonlinear structural seismic response prediction
Ja Guo, Kohji Ikago

2383 Thermo-mechanical Analysis of Reinforced Concrete Under Extreme Temperature to Assess the Fire Safety of Structures
Mahendra Kumar Pal, Mohd Akram, Maddagedera Lalith, Yosuke Kawahito, Toshihiro Kameda, Munero Hori

2356 Global Sensitivity Analysis of Wooden Building Based on Polynomial Chaos Expansion Considering Uncertainty in Material Property
Rikuto Mizobuchi, Masayuki Kohiyama

2933 Prototype of Digital Twin Composed of Heterogeneous Seismic Response Simulations in the Urban Cyber Physical System
Takuzo Yamashita, Yoshishide Sekimoto, Mikio Koshihara, Takafumi Nakagawa, Hideyuki O-tani

2969 Damage Recognition of Wooden House Using Deep Neural Network Trained with Simulated Responses Considering Epistemic Uncertainty *Keynote Lecture
Masayuki Kohiyama, Takuma Kumagai, Takuzo Yamashita

3044 Finite Element Analyses of Four-story RC Structures with Solid Elements and Validation of Results Using Measurement Data Obtained by Full-scale Shaking Table Experiments
Jun Kojima, Takuzo Yamashita, Jun Fujikawa

3055 Slope Disaster Risk Evaluation in the 2018 Hokkaido Eastern Iburi Earthquake using DIPM and GIS
Fazlul Habib Chowdhury, Takashi Matsushima

3067 Dynamic Characteristics Identification of Exposed Column Bases of Steel Building Structures Modeled by Solid Finite Elements
Jun Fujikawa, Makoto Ohkaki, Tomoshi Miyamura

3161 Data Assimilation Using the Quality Engineering for the Seismic Response Analysis of 3-Story Wooden Houses
Takafumi Nakagawa, Hiroshi Isoda, Yuji Kado, Atsuo Takino

3357 Evaluation of the Elastoplastic Behavior of Structures for use as Hysteretic dampers
Flavia Bustos, Jorge Hinojosa

MS2208 Physics-based Simulation of Earthquake Hazards with HPC and HQC

474 Modeling Frameworks for Earthquake Deformation Problems
Thorsten Becker, Simone Puel, Omar Ghattas, Umberto Villa, Dunyu Liu

1095 High-resolution Seamless Simulations of Earthquake Disasters and Economy
Lalith Maddegedara, Amit Gill, Munero Hor, Tsuyoshi Ichimura, Kohei Fujita

1129 Fast and Scalable Seismic Soil Liquefaction Simulation with Finite Element Method on GPUs
Ryota Kusakabe, Tsuyoshi Ichimura, Kohei Fujita, Munero Hor, Lalith Wijerathne
1446 Estimation of Occurrence and Displacement of Surface Fault Using High Performance Computing - Simulations of Surface Ruptures in Recent Earthquakes in Japan -
Masataka Sawada

1582 Study on Seismic Response Analysis of Large-Scale Reinforced Concrete Structures Using High-Fidelity Models
Hiroki Motoyama, Muneo Hori

1740 Seismic Wave Simulation from Earthquake Fault to City with Large-Scale Finite-Element Analysis on Fugaku
Kohei Fujita, Tsuyoshi Ichimura, Kentaro Koyama, Ryota Kusakabe, Yuma Kikuchi, Takane Hori, Muneo Hori, Lalith Maddegedara, Noriyuki Ohi, Tatsuo Nishiki, Hikaru Inoue, Kazuo Minami, Seiya Nishizawa, Miwako Tsuji, Naonori Ueda
<table>
<thead>
<tr>
<th>MS2301</th>
<th>Recent advances in modeling and simulating infectious disease outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2248</td>
<td>Dynamic parameterization of a modified SEIRD model to analyze and forecast the outbreak evolution of COVID-19 in the United States</td>
</tr>
<tr>
<td></td>
<td>Orhun Davarci, Alex Viguerie, Emily Yang, Thomas Yankeelov, Guillermo Lorenzo</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2401</th>
<th>Recent advances on numerical methods and parallel solvers for the cardiac function</th>
</tr>
</thead>
<tbody>
<tr>
<td>947</td>
<td>Efficient and robust parallel solvers for cardiac reaction-diffusion models</td>
</tr>
<tr>
<td></td>
<td>Ngoc Mai Monica Huynh</td>
</tr>
<tr>
<td>1227</td>
<td>Stabilizing numerical oscillations in cardiac active mechanics: an oscillations-free and accurate fully partitioned scheme</td>
</tr>
<tr>
<td></td>
<td>Francesco Regazzoni, Alfio Quarteroni</td>
</tr>
<tr>
<td>1380</td>
<td>3D-0D closed-loop model for the simulation of cardiac electromechanics including a detailed myofiber architecture</td>
</tr>
<tr>
<td></td>
<td>Roberto Piersanti, Christian Vergara, Luca Dede', Alfio Quarteroni</td>
</tr>
<tr>
<td>1638</td>
<td>Higher-order time integration with algebraic adaptivity in a cell by cell discretization of cardiac excitation</td>
</tr>
<tr>
<td></td>
<td>Fatemeh Chegini, Martin Weiser</td>
</tr>
<tr>
<td>1692</td>
<td>Efficient solvers for cardiac mechanics</td>
</tr>
<tr>
<td></td>
<td>Nicolas Alejandro Barnafi</td>
</tr>
<tr>
<td>2617</td>
<td>Boundary Element Method for the Cell-by-Cell Model in Cardiac Electrophysiology</td>
</tr>
<tr>
<td></td>
<td>Giacomo Rosilho de Souza, Simone Pezzuto, Rolf Krause, Michael Mufterer</td>
</tr>
<tr>
<td>2776</td>
<td>Simple Tools for Cardiac Simulation GPU-Parallel Nonlinear Multiphysics</td>
</tr>
<tr>
<td></td>
<td>Toby Simpson, Simone Pezzuto, Rolf Krause</td>
</tr>
<tr>
<td>2812</td>
<td>A Parallel Algorithm for the Simulation a Patient-specific Heart with Four Chambers Keynote Lecture</td>
</tr>
<tr>
<td></td>
<td>Xiao-Chuan Cai</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2403</th>
<th>Numerical Methods for Solving Frictional Quasistatic Contact Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>658</td>
<td>Numerical stabilization for the constraint formulation of many-body-many-contact Coulomb friction</td>
</tr>
<tr>
<td></td>
<td>Hans-Georg Matuttis, Keita Shinohara, Dominik Krenkel, Jian Chen, Jan Mueller</td>
</tr>
<tr>
<td>1935</td>
<td>Texture Shape Optimization for Minimization of Friction Coefficient (Comparison of Shape Optimization Results for Circular and Herringbone Textures)</td>
</tr>
<tr>
<td></td>
<td>Hiroaki Atata, Takahiko Kurahashi</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2404</th>
<th>Reliability of Robots</th>
</tr>
</thead>
<tbody>
<tr>
<td>564</td>
<td>An efficient single-loop method for structural design under the random uncertainties with interval distribution parameters</td>
</tr>
<tr>
<td></td>
<td>Weiwei Chen</td>
</tr>
<tr>
<td>914</td>
<td>Multi-objective Optimization of 1-DOF Transformable Wheel Mechanisms for High Adaptability</td>
</tr>
<tr>
<td></td>
<td>Jeong Won Shim, Jungho Kim, Neung Hwan Yim, Youngsoo Kim, Yoon Young Kim</td>
</tr>
<tr>
<td>1670</td>
<td>Identification of Key Parameters of Nonlinear Friction of Robot Joints based on Neural Network Keynote Lecture</td>
</tr>
<tr>
<td></td>
<td>Haodong Duan, Jianhua Yang, Shuyong Duan, Xu Han, Guirong Liu</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MS2405</th>
<th>Benchmark technologies and cases for computational acoustics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>Comparing study on acoustic problems in uniform subsonic flow based on the fast multipole boundary element method</td>
</tr>
<tr>
<td></td>
<td>Ruihua Sun, Xueliang Liu, Haijun Wu, Weikang Jiang</td>
</tr>
<tr>
<td>1776</td>
<td>Damping Uncertainty and Sound Transmission Loss of Laminated Composite Plates with Embedded Damping Layers</td>
</tr>
<tr>
<td></td>
<td>Xiaosong Zhu</td>
</tr>
</tbody>
</table>
Platinum Sponsor’s Special Lectures (9100) (in alphabetical order)

<table>
<thead>
<tr>
<th>9101</th>
<th>CYBERNET SYSTEMS’ innovative products and services offered by our development subsidiaries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CYBERNET SYSTEMS CO., LTD.</td>
</tr>
<tr>
<td>9102</td>
<td>Driving Faster Innovation with Modeling and Simulation (MODSIM)</td>
</tr>
<tr>
<td></td>
<td>Dassault Systèmes</td>
</tr>
<tr>
<td>9103</td>
<td>Discover how digital reality solutions is accelerating the journey towards an autonomous and sustainable future</td>
</tr>
<tr>
<td></td>
<td>Hexagon</td>
</tr>
<tr>
<td>9104</td>
<td>Towards Digital Transformation and next-generation Design with Multiphysics Simulation-Apps, Machine Learning, and UQ</td>
</tr>
<tr>
<td></td>
<td>Keisoku Engineering System Co., Ltd.</td>
</tr>
</tbody>
</table>

Gold Sponsor’s Special Lectures (9200) (in alphabetical order)

<table>
<thead>
<tr>
<th>9201</th>
<th>Numerical Simulations of Quenching for Multiple Helical Gears by Means of iconCFD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IDAJ Co., LTD.</td>
</tr>
<tr>
<td>9202</td>
<td>Recent Advances for High-Fidelity Crash Simulation and Challenges toward Data-Driven Design</td>
</tr>
<tr>
<td></td>
<td>JSOL Corporation</td>
</tr>
<tr>
<td>9203</td>
<td>Introduction of solutions to support digital manufacturing</td>
</tr>
<tr>
<td></td>
<td>KOZO KEIKAKU ENGINEERING Inc.</td>
</tr>
<tr>
<td>9204</td>
<td>Recent Application Examples of Particle Method CFD simulations 2020-2021</td>
</tr>
<tr>
<td></td>
<td>Prometech Software, Inc.</td>
</tr>
<tr>
<td>9205</td>
<td>Introducing "Jupiter", an integrated CAE framework from Asia developed by TechnoStar Co., Ltd.</td>
</tr>
<tr>
<td></td>
<td>TechnoStar Co., Ltd.</td>
</tr>
</tbody>
</table>

International Satellite Sponsor Session (9300)

<table>
<thead>
<tr>
<th>9301</th>
<th>The World of the Supercomputer Fugaku</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RIKEN (R-CCS: RIKEN Center for Computational Science)</td>
</tr>
<tr>
<td>9302</td>
<td>Introduction of Digital Twin utilization realized by IoT + CAE</td>
</tr>
<tr>
<td></td>
<td>CYBERNET SYSTEMS CO., LTD., Platinum sponsor</td>
</tr>
<tr>
<td>9303</td>
<td>Machine Learning and Artificial Intelligence for Data Driven Engineering</td>
</tr>
<tr>
<td></td>
<td>Keisoku Engineering System Co., Ltd., Platinum sponsor</td>
</tr>
<tr>
<td>9304</td>
<td>A Model Based Approach for a Multiphysics Optimization of an Airborne Radome</td>
</tr>
<tr>
<td></td>
<td>Dassault Systèmes Platinum sponsor</td>
</tr>
<tr>
<td>9305</td>
<td>Future of Manufacturing - Digitalise operations, optimise processes and gain continuous improvements -</td>
</tr>
<tr>
<td></td>
<td>Hexagon, Platinum sponsor</td>
</tr>
<tr>
<td>9306</td>
<td>Balancing Interior Environmental Quality and HVAC Energy Efficiency using 1D and 3D Simulation</td>
</tr>
<tr>
<td></td>
<td>Dassault Systèmes Platinum sponsor</td>
</tr>
<tr>
<td>9307</td>
<td>Smart HVAC with Hexagon solutions</td>
</tr>
<tr>
<td></td>
<td>Hexagon, Platinum sponsor</td>
</tr>
<tr>
<td>9308</td>
<td>Electrochemical Modeling and Simulation for Rechargeable Batteries</td>
</tr>
<tr>
<td></td>
<td>Keisoku Engineering System Co., Ltd., Platinum sponsor</td>
</tr>
<tr>
<td>9309</td>
<td>Reusable Model Data for Electric Drive Development</td>
</tr>
<tr>
<td></td>
<td>Dassault Systèmes Platinum sponsor</td>
</tr>
<tr>
<td>Session ID</td>
<td>Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>9310</td>
<td>Using CFD in a journey towards delivering a sustainable world</td>
</tr>
<tr>
<td>9311</td>
<td>Introduction of fluid-based topology optimization system</td>
</tr>
<tr>
<td>9312</td>
<td>The Current Status and Development of Practical Sheet Metal Forming Simulation</td>
</tr>
<tr>
<td>9313</td>
<td>An Aero-Acoustic Analysis of Cavity Flow-Noise using COMSOL Multiphysics</td>
</tr>
<tr>
<td>9314</td>
<td>Overview of Prometech Software products including Particleworks, Granuleworks, and CG visualization service</td>
</tr>
<tr>
<td>9315</td>
<td>Visualization of behavior of liquids on free surface with MPS (Moving Particle Simulation) method using Particleworks</td>
</tr>
<tr>
<td>9316</td>
<td>Better approach to solve challenges related to powder handling using iGRAF (Integrated Granular Flow Simulation Software)</td>
</tr>
<tr>
<td>9317</td>
<td>Multiphysics finite element analysis for next-generation quantum and optical devices</td>
</tr>
<tr>
<td>9318</td>
<td>Multiscale Simulation of Polymeric Materials: Overview and Examples</td>
</tr>
<tr>
<td>9319</td>
<td>Multiscale Modeling: Failure Analysis of a Notched Fiber Reinforced Laminate</td>
</tr>
<tr>
<td>9320</td>
<td>CYBERNET Multiscale.Sim - Accelerate Material Design of Composites</td>
</tr>
<tr>
<td>9321</td>
<td>Hexagon DX Solution with measurement technology and production solutions</td>
</tr>
<tr>
<td>9322</td>
<td>Introduction of the latest solutions utilizing Python API and open source by Jupiter</td>
</tr>
<tr>
<td>9323</td>
<td>Introduction of CAE result evaluation using AR/VR to promote intuitive understanding</td>
</tr>
<tr>
<td>9324</td>
<td>Kajima, construction with digital</td>
</tr>
</tbody>
</table>

Japanese Satellite Sponsor Session (9400)

<table>
<thead>
<tr>
<th>Session ID</th>
<th>Title</th>
<th>Sponsor</th>
</tr>
</thead>
<tbody>
<tr>
<td>9401</td>
<td>Particleworks/Granuleworks software applications and solutions for the manufacturing industry</td>
<td>Prometech</td>
</tr>
<tr>
<td>9402</td>
<td>Introduction of the latest solutions utilizing Python API and open source by Jupiter</td>
<td>TechnoStar</td>
</tr>
<tr>
<td>9403</td>
<td>Simulation technology that contributes to achieving carbon neutrality</td>
<td>IDAJ</td>
</tr>
<tr>
<td>9404</td>
<td>Innovative CFD tools open up new fluid simulation technologies</td>
<td>IDAJ</td>
</tr>
</tbody>
</table>